14. Current status of Nuclear Reaction Data File for Astrophysics (NRDF/A)

T. Yoshida, N. Furutachi, M. Kimura, M. Asano, T. Togashi, H. Murakami and K. Kato Nuclear Research Data Centre, Hokkaido University (JCPRG)

N. Otuka

Nuclear Data Section, International Atomic Energy Agency

Abstract

Recent activities in JCPRG for compilations of EXFOR and Nuclear Reaction Data File (NRDF) have been introduced. As an extension of such activities, a preparation of new nuclear data libraries: Nuclear Reaction Data File for Astrophysics (NRDF/A) has been planned. The framework of the data table has been almost built. As the next step, evaluations by using cluster models have been planned.

Introduction

The main activity of JCPRG is compilation of experimental nuclear reaction data. Compilation works of observed data are done in the following steps: compilers input bibliography, experimental condition and numerical data from experiment and complete the EXFOR compilations. This is usually done within few weeks after publications of the articles if they agree with JCPRG responsibility of compilations. If the numerical data are not available from authors, we make digitization of the figures of experimental data. As the next step, we transmit compiled data to IAEA Nuclear Data Section. After that, EXFOR reviewers check the compiled data and obtain author's proof. Finally, the nuclear data in the articles will be released about six month after publication. The total number of charged particle reaction experiments for EXFOR compilation is about 3000. Our compilations contribute about 10 percent of the whole EXFOR data.

Besides EXFOR, we have been developing the original format, Nuclear Reaction Data File (NRDF). Recently, the charged-particle nuclear data become more and more important, due to the increase of astrophysical interest and medical use. By using NRDF, we can specifically treat physical quantity even if they correspond to the integrated cross section (which astrophysical and medical applications usually use) or nuclear structure data (typically differential cross section). The NRDF format has flexibility which does not much depend on characteristic data in fields of study because of its large capacity of construction of compilation codes.

Astrophysical nuclear reaction is one of the applications of NRDF where the nuclear network calculation plays an important role [1]. For such reactions, we focus on neutrons, protons, alpha, gamma, or neutrino as incident or emitted particles. To study the evolution of the early universe, the

reactions concerning with light nuclei below the pf shell are important. Some of these astrophysical reactions occur at very low temperature, which are difficult to reproduce by experiments because of the very small reaction rates. The evaluations based on the theoretical calculations are indispensible to make up for the experiments. NACRE (Nuclear Astrophysics Compilation of Reaction rates) is one of the most widely used evaluated astrophysical nuclear reaction data base [2]. However, it becomes much better to take into account the most recent experimental data and use more sophisticated calculation in order to obtain more reliable evaluation.

Construction of the data table

We construct a new database for this study: we call this file as Nuclear Reaction Data File for Astrophysics (NRDF/A). In the previous version of NRDF/A (2006), we have assembled only 31 reactions for nuclei from C to Mg. In the present new version (2008), the astrophysical important light nuclei up to Si are included to achieve the coverage for NACRE. As a result, the number of reactions to be compiled is about 200.

We are planning to use cluster model calculations for evaluation. As one of such models, we use Anti symmetric Molecular Dynamics (AMD) [3]. This can be a good candidate for the models because of its wide scope of application below the pf shell nuclei. Here, we can treat two important pictures, shell model like configuration and cluster configuration by taking proper parameters for effective nuclear interactions.

Before making the evaluation, we are now preparing the data table. For each reaction, we search for the corresponding articles in order to obtain the numerical data for future works of evaluation. Here, we utilize the bibliographic information from Nuclear Science References (NSR) of National Nuclear Data Center (NNDC). The data table consists of reaction information, energy range, information of physical quantity and bibliographic information.

In the reaction information, energy ranges are given in addition to reaction equations. We also compile how the physical quantities (cross section, reaction rate, S-factor, spectrum, electro-magnetic transition strength and log(ft)) are obtained. Here, we must notice that the numerical values have not been compiled at the present stage. In compensation, we distinguish the analyzed, deduced, measured and calculated data. The bibliographic information consists of key-number, journal name, volume number, publications year and author name. For the convenience, we make the link to pdf files of articles by using digital object identifier (D.O.I.) if it is available.

In order to choose the articles which are needed to assemble the numerical data for the evaluation, we check the NRDF/A against EXFOR. This is because that we would like to directly use the numerical values which is already appears in EXFOR. For this purpose, we put the coverage information against EXFOR into each data set. After construction of the data table including numerical values, the evaluation based on cluster model will be performed.

References

- [1] E. M. Burbidge et al., Rev. Mod. Phys. 29, 547 (1957).
- [2] Angulo et al., Nucl. Phys. A 656, 3 (1999).
- [3]Y. Kanada En'yo, H. Horiuchi and A. Ono, Phys. Rev. C 52, 628 (1995).

Table 1 Example of data table in NRDF/A

reaction	enerm/-min	enerm/-may	cross-section	S-factor	kev-numbe	article	volume	page	year	first author
reaction	energy min	energy max	cross section	S Tactor	key numbe	article	volume	page	year	Inst author
6Li(p,g)7Be	*8F+03	*1.3E+05		ded	2004PR09	PR/C	70	55801	2004	R.M.Prior
6Li(p,g)7Be		*1E+07	ana	ucu		INDC(JPN)/U	192	156		T.Murata
6Li(p,g)7Be		12:07	mes		2000SK02		5	198		E.Skreti
6Li(p,g)7Be		*1.1E+05	11100		2000KEZY		с -	42		J.H.Kelley
6Li(p,g)7Be	02 01			cal	2000BA09		61	25801		D.Baye
6Li(p,g)7Be	Not given	*2E+06			1997NO04		56	1144		K.M.Nollett
6Li(p,g)7Be					1996RE16		27	231		H.Rebel 99
6Li(p,g)7Be		*8E+04		ded	1996LA10	PR/C	53	1977	1996	C.M.Laymon
6Li(p,g)7Be	*3E+04	*1.8E+05	mes	mes	1993BRZQ	ref[c]		169	19 3	R.Bruss 9
6Li(p,g)7Be	*4E+04	*1.8E+05		ded	1992CE02	NP/A	539	75	1992	F.E.Cecil
6Li(p,g)7Be		*1.8E+05			1991CEZZ	BAP	36	No.4, 1242, B10 12	1991	F.E.Cecil
6Li(p,g)7Be			cal		1990KUZW	ref[d]		90	1990	P.D.Kunz
6Li(p,g)7Be	*5E+05	*1E+06			1987TI05	AJP	40	319	1987	C.I.W.Tingwell
6Li(p,g)7Be	Not given				1983SEZT	BAP	28	No.7,965,AB7	1983	R.G.Seyler
6Li(p,g)7Be	*4E+05	*1.1E+06	*mes *cal		1983OS04	NC/A	76	73	1983	R.Ostojic
6Li(p,g)7Be	*2E+05	*1.2E+06	*mes		1979SW02	NP/A	331	50	1979	Z.E.Switkowski
6Li(p,g)7Be	*2E+05	*1.2E+06	mes		1978SWZZ	REPT UM-P	88	23	1978	Switkowski
6Li(p,g)7Be	low		cal		1974BAXA	REPT CONF	740218	36	1974	
6Li(p,a)3He	*9E+04	*5.8E+05	mes	ded	2008CR02	JP/G	35	14004	2008	J.Cruz
6Li(p,a)3He	low		ana	ana	2003SP02	NP/A	719	99 c	2003	C.Spitaleri
6Li(p,a)3He	low		ana		2002BA77	NP/A	707	277	2002	F.C.Barker
6Li(p,a)3He		1E+06		ana	1998AN18	NP/A	639	733	1998	C.Angulo
6Li(p,a)3He		*2E+06			1997NO04	PR/C	56	1144	1997	K.M.Nollett
6Li(p,a)3He		5E+05			1997BO12	NP/A	617	57	1997	Y.Boudouma
6Li(p,a)3He					1997BA95	NP/A	627	324		A.B.Balantekin
6Li(p,a)3He		1.004E+06	*mes	ded	1992EN01	PL/B	279	20		S.Engstler
6Li(p,a)3He		*2.8E+05			1991BU14		301	383	1991	L.Buchmann
6Li(p,a)3He			*mes		1987BIZY	ref[e]		E82	1987	L.Bimbot
6Li(p,a)3He		*6.25E+07	*mes		1984NE05		40	43		O.F.Nemets
6Li(p,a)3He			*mes			PR/C	20	2257		S.Frankel
6Li(p,a)3He		*2.6E+06	*mes		1977LI01	NP/A	275	93		C.–S.Lin
6Li(p,a)3He			*mes		1972DE01		178	417		R.M.Devries
6Li(p,a)3He			*mes		1972BU16		50	1295		S.N.Bunke
6Li(p,a)3He			*mes ded		1971SP05		164	1		H.Spinka
	*1.51E+05	*3.17E+05	*mes ded		1971SP05		196	6 34		H.Spinka
6Li(p,a)3He			*mes		1971BU24		178			S.N.Bunker
6Li(p,a)3He			*mes ded		1971BR12		3 11	<u>1771</u> 711		K.H.Bray
6Li(p,a)3He			mes			YF				V.I.Komarov
6Li(p,a)3He 6Li(p,a)3He			mes			Sov.J.Nucl.Phys NIM	11	399 115		V.I.Komarov G.M.Lerner
6Li(p,a)3He 6Li(p,a)3He		*5E+04	mes *mes		1969LE08 1967FI05	NIM NP/A	69 96	513		G.M.Lerner O.Fiedler
6Li(p,a)3He 6Li(a,g)10B		≁J⊑⊤U4	TILLS		2004GYZZ		30	010	_	O.Fiedler Gy.Gyurky
6Li(a,g)10B 6Li(a,g)10B		*1.185E+06			2004GYZZ 2004GY02		21	355	2004	Gy.Gyurky Gy.Gyurky
6Li(a,g)10B	···	*1.185E+00 *2E+06			1997NO04		56	1144	1997	K.M.Nollett
6Li(a,g)10B	Not given	.22.00			1997NO04		27	231	1 6	H.Rebel 99
		*1.175E+06	*mes		1990RE10		499	353	1989	A.K.Basak
6Li(a,g)10B			mes		1989BA24		499 59	1088		D.E.Murnick
6Li(a,g)10B		*18E+06			1986MYZZ		31	No.4, 787, BI5		E.G.Myers
6Li(a,g)10B	. 12.00	*3.7E+06	ana		1986CE05		245	547		F.E.Cecil
6Li(a,g)10B	Resonance	. 3.7 2 '00	unu		1985NE05		31	2295		J.E.Nelson
6Li(a,g)10B		*1.2E+06			1984NA07		417	289	1984	J.Napolitano
	Resonance					BAP	28	No.4, 650, AG4	1983	J.Napolitano
					100011/122			110. I, 000, / (GT		s. apontano

references of article

[a] Trans.Bulg.Nucl.Soc.

[b] Triangle Univ.Nuclear Lab., Ann.Rept.

[c] Proc.2nd Intern.Symposium on Nuclear Astrophysics, Nuclei in the Cosmos, Karlsruhe, Germany 6-10 July, 1992, F.Kappeler, K.Wisshak, Eds., IOP Publishing Ltd., Bristol, England

[d] Univ.Colorado, Nucl.Phys.Lab., Tech.Prog.Rept.
[e] Univ.Paris, Inst.Phys.Nucl., 1986 Ann.Rept.
[f] Erratum Nucl.Phys/A
[g] nucl-ex/0402020,02/26/2004 (2004)