NATIONAL NUCLEAR DATA CENTER Bldg. 197D Brookhaven National Laboratory P. O. Box 5000 Upton, NY 11973-5000 U.S.A.

(Internet) "NNDC@BNL.GOV

Telephone: (516)344-2902 FAX: (516)344-2806

Memo CP-C/254

DATE:August 26, 1999TO:DistributionFROM:V. McLaneSUBJECT:Resonance strength

Please make the following dictionary updates.

Add to Dictionary (Reports) STR Strength

Add to Dictionary 36 (Quantities) ,WID/STR Resonance strength

A proposed LEXFOR entry is attached

Distribution

M. Chiba, Sapporo F. E. Chukreev, CaJaD S. Dunaeva, Sarov K. Kato, JCPDG M. Kellett, NEADB V. N. Manokhin, CJD S. Maev, CJD O. Schwerer, NDS S. Tak⊲cs, ATOMKI F. T. Tárkányi, ATOMKI Y. Tendow, RIKEN V. Varlamov, CDFE Zhuang Youxiang, CNDC NNDC (3)

LEXFOR (proposed)

Resonance Strength

The resonance strength is defined as:

$$\omega \Gamma = \frac{2J+1}{(2j_i+1)(2j_i+1)} \frac{\Gamma_i \Gamma_r}{\Gamma}$$

Where:

 $\begin{array}{ll} J &= \text{spin of resonance,} \\ j_p &= \text{spin of incident projectile,} \\ j_t &= \text{spin of target,} \end{array}$

 \mathbf{a}_{p} = partial width for formation of resonance by incident particle p,

 ϑ_r = partial width for decay of resonance by reaction channel r,

 \Rightarrow = total width of resonance.

Resonance strengths are determined experimentally by measuring the area under the resonant yield curve:

$$\omega\Gamma = \frac{2\varepsilon}{\lambda_R} \frac{A_t}{A_t + A_p} Y_r$$

where:

 8_{R} = particle wavelength at the resonance energy,

 γ = stopping power

EXFOR coding

REACTION string: ,WID/STR Units: energy, *e.g.*, EV

The energy coded is the resonance energy as for other resonance data.