LEXFOR (proposed in addition to MEMO CP-C/254)

Resonance Strength

The resonance strength is defined as

$$\omega\Gamma = \frac{2J+1}{(2j_i+1)(2j_i+1)} \frac{\Gamma_i \Gamma_r}{\Gamma}$$

Where

J = spin of resonance

 j_i = spin of incident projectile

 $j_t = \text{spin of target}$

 Γ_i = partial width for formation of resonance by incident particle i,

 Γ_r = partial width for decay of resonance by reaction channel r,

 Γ = total width of resonance

Resonance strengths are determined experimentally by measuring the area under the resonant yield curve:

$$\omega\Gamma = \frac{2\varepsilon}{\lambda_R} \frac{A_t}{A_t + A_i} Y_r$$

where

 λ_R = particle wavelength at the resonance energy

 Y_r = stopping power

Partial resonance width applies when reaction channel "r" is the transition on specific energy level, for example by γ -decay.

EXFOR coding

REACTION (Z-S-A(N,EL),,WID/STR)

Or

REACTION (Z-S-A(N,G),PAR,WID/STR)

Units: energy, *e.g.* EV or MILLI-EV

LEXFOR (proposed)

SAMPLE

.....previous text.....

Example

BIB

REACTION (Z-S-A(N,TOT),,SIG/TMP)

or

REACTION (Z-S-A(N,F), PRE, DA/TEM,, LEG/RS)

.

ENDBIB

COMMON 1

TEMP K

0.6

ENDCOMMON

3 DATA

EN