

INTERNATIONAL NUCLEAR DATA COMMITTEE

INDC(NDS)-69

Distribution: G+Special

Consultants' Meeting

International Atomic Energy Agency

on

Charged Particle Nuclear Data (CPND) Compilation

Vienna, 8-12 September 1975

Edited by H.D. Lemmel

December 1975

IAEA NUCLEAR DATA SECTION, KÄRNTNER RING 11, A-1010 VIENNA

ż,

INDC(NDS)-69

Note: A summary containing from this document the pages

- 5-6 Introduction
- 7-8 Agenda
- 9 List of Participants
- 23-29 Conclusions and Recommendations

has been distributed separately as INDC(NDS)-71. Annex 2 of this document on the activities of the USSR Centre for nuclear structure and reaction data has been distributed separately as INDC(CCP)-79.

> Reproduced by the IAEA in Austria March 1976 76-1351

INDC(NDS)-69 Distribution: G+Special

t, r

.

Consultants' Meeting

on

Charged Particle Nuclear Data (CPND) Compilation

Vienna, 8-12 September 1975.

Edited by H.D. Lemmel

December 1975

2/3/4

•

Table of Contents

.

Page

5

Introduction

7	Agenda and Schedule			
9	List of Pa	List of Participants		
11	List of Ab	breviations		
13	Minutes			
23	Conclusion	s and Recommendations		
31	Agreements	about the CPND Exfor System		
37	Actions			
	Annexes			
41	Annex 1:	Brief report on the activities of the Karlsruhe CPND group.		
45	Annex 2:	Brief report on the activities of CAJaD, the nuclear data centre at the Kurchatov Institute.		
55	Annex 3:	Report on the USA Survey on Nuclear Structure Data and CPND.		
		Note: A brief report on the US activities in the CPND field was included in the Minutes page 14.		
69	Annex 4:	Report on the activities of the Japanese Study Group.		
75	Annex 5:	Letter by G. Dearnaley, Harwell, on CPND for surface materials analysis.		
77	Annex 6:	An information system for physics data in the Fed.Rep. of Germany.		
-83	Annex 7:	Short guide to Exfor.		
89	Annex 8:	Non-neutron Exfor developed at Karlsruhe (Memo $4C-3/121$).		
105	Annex 9:	Response of the four neutron data centres to the Karlsruhe non-neutron Exfor (Memo $4C-1/60$).		
109	Annex 10:	Second version of the non-neutron Exfor developed at Karlsruhe.		
117	Annex 11:	CPND Exfor entries prepared at CAJaD.		
125	Annex 12:	Third version of the non-neutron Exfor developed at Karlsruhe, submitted after the meeting on 75-9-23.		
129	Annex 13:	US task force report on a generalized ENDF format.		

INTRODUCTION

The present meeting was a successor to the IAEA Consultants' Meeting on Charged Particle and Photonuclear Reaction Data held in Vienna 24 - 26 April 1974 [1]. This earlier meeting, considering the needs for charged particle and photonuclear reaction data documented in ref. [2], concluded:

"that the very valuable services provided by the existing centres and groups could be usefully enhanced by establishing a coherent international cooperation in the compilation, evaluation and dissemination of these data. This cooperation would require a free international exchange of experimental as well as evaluated data between the centres and groups concerned."

The International Nuclear Data Committee considered the topic at its seventh meeting in October 1974 and concluded [ref. 3, recommendation 2.4]:

"The Committee values the activity of the existing "non-neutron" nuclear data centres and groups and judges it important to continue this work, in most cases with increased support. It asks IAEA and its member states to support the above activity, especially the international coordination of this work and the exchange of appropriate"non-neutron" nuclear data and references, by continuing to convene meetings of "non-neutron" nuclear data centres and groups."

Since then, some essential steps towards an international cooperation in charged-particle nuclear data compilation have been made:

The charged-particle nuclear data group at Karlsruhe had prepared sample entries of charged-particle reaction data compiled in a format close to Exfor, a system which had been developed by the four neutron data centres for the exchange of neutron nuclear data [4]. The modified EXFOR system as proposed by Karlsruhe had meanwhile been reviewed by the four neutron data centres at their March 1975 meeting [5]. Also the Nuclear Data Centre at the Moscow Kurchatov Institute submitted sample entries in the format of the Karlsruhe Exfor system. Furthermore, a study group in Japan has recently developed the prototype of a Nuclear Data File. In the USA, the National Neutron Cross-Section Center has assumed responsibility for coordinating the US activities on charged-particle nuclear data with similar activities abroad.

5

On the basis of the conclusions of the 1974 Meeting and of the development which took place since then, the present meeting was the first to discuss technical details on an international cooperation and exchange of charged-particle muclear data.

- [1] Summary Report on the Consultants' Meeting on Charged Particle and Photomuclear Reaction Data, 24-26 April 1974, Vienna, INDC(NDS)-59, IAFA, Vienna, June 1974. For the papers submitted see INDC(NDS)-61, IAFA, Vienna, July 1974.
- [2] Symposium on Nuclear Data in Science and Technology, Paris 1973, Proceedings IAEA, Vienna, 1973, and:
 A. Calamand: Survey of current and future needs for charged particle and photo-nuclear reaction data, INDC(NDS)-62.
- [3] Official Minutes of the Seventh INDC Meeting, Lucas Heights, 7-11 Oct. 1974, INDC-18, IAFA, Vienna, 1975.
- [4] USA National Neutron Cross-Section Center, NEA Neutron Data Compilation Centre, IAEA Nuclear Data Section, USSR Centr po Jadernym Dannym: EXFOR Manual, internal distribution.
- [5] Report on the Eleventh Four-Centre Meeting, Brookhaven, National Laboratory, USA, 10-14 March 1975, INDC(NDS)-68, IAEA, Vienna 1975.

Consultants' Meeting

on

Charged Particle Nuclear Data (CPND) Compilation

Vienna, 8-12 September 1975

Agenda

I. Brief review of current and planned CPND compilation activities

Bibliography, Compilation and Evaluation of CPND

- Specific user needs;
- · Scope, content and format;
- Publications and services.

II. Matters of technical cooperation

A. Bibliography

- 1. Eperience gained from the use of "Recent References", as far as related to CPND; any changes desirable?
- .2. Who compiles what where?
 - Continue centralized input?
 - Start coordinated input from different Centres and Groups?
 - Practical details for coordinated input.
- 3. Publications and services.
- B. Compilation and Exchange of CPND
 - 1. Principle decision whether a format close to the "neutron data EXFOR" is acceptable, mutatis mutandis, for CPND.
 - 2. Scope and distribution of work between Centres and Groups involved.
 - Targets, projectiles, reactions, quantities;
 - Experimental, deduced, interpolated, theoretical data, thick target yields;
 - Selective versus comprehensive compilation;
 - Distribution of work defined by physics criteria (excitation function, angular distribution, etc.) and/or geographical origin of data;
 - Possible future extension of the scope (heavy ions?).
 - 3. Technical details, contents and format.
 - Numeric information;
 - Bibliographic and experimental description;
 - Keywords, codes, retrievability (what is needed?)
 - What modifications to EXFOR are required?
 - Codes for reactions and quantities;
 - Associated parameters (standard reference values, half-lives, etc.)
 - Accession-numbers.
 - 4. Organization of cooperation.
 - Mechanisms for exchange, compiler's and system manual, dictionaries of codes and keywords, meetings;
 - Implementation schedule.

- C. Evaluation of CPND
 - 1. Scope;

 - Feasibility of cooperation;
 Common method of evaluation:
- D. Service to users

III. Review of actions, conclusions and recommendations from this meeting

8	ch	б	٦.	۰۵
~		Cu		

•

Monday morning:	agenda item I
Monday afternoon:	II.A.1,2
Tuesday morning:	II.A.3
Tuesday afternoon:	II.B.1,2
Wednesday:	II.B.3
Thursday morning:	II.B.4 and II.D
Thursday afternoon:	II.C 4
Friday:	ΠI

8

List of Participants

Consultants	
Mr. C.L. Dunford	National Neutron Cross Section Center Brookhaven National Laboratory Upton, L.I., N.Y. 11973, USA
Mr. H. Münzel	Charged Particle Nuclear Data Group Institut für Radiochemie Kernforschungszentrum Karlsruhe Postfach 3640 D-75 Karlsruhe, Fed. Repub. of Germany
Mr. H. Ohmuma	Tokyo Institute of Technology Dept. of Physics Oh-Okayama, Meguro-ku, Japan
Mr. L.L. Sokolovskij	Center for Nuclear Structure & Reaction Data of the USSR State Committee on the Utilization of Atomic Energy I.V. Kurchatov Institute of Atomic Energy Moscow, USSR
Observers	
Mr. H. Behrens	Zentralstelle für Atomkernenergie Dokumentation Kernforschungszentrum Karlsruhe 7501 Leopoldshafen, Fed. Repub. of Germany
Mr. D. Brune	A.B. Atomenergi Sweden Fack S-611 Ol Nyköping 1, Sweden
Mr. G. Ebel	Zentralstelle für Atomkernenergie Dokumentation Kernforschungszentrum Karlsruhe 7501 Leopoldshafen, Fed. Rep. of Germany
Mr. T. Kitagawa (part-time)	International Institute for Advanced Study of Social Information Science Kyushu University Fukuoka-Shi 812, Japan
Mr. J. Lange	Charged Particle Nuclear Data Group Institut für Radiochemie Kernforschungszentrum Karlsruhe Postfach 3640 D-75 Karlsruhe, Fed. Rep. of Germany
Mr. L. Lesca	Centre de Compilation de Données Neutroniques B.P. no. 9 F-91190, Gif-sur-Yvette, France
IAEA Nuclear Data Section	
Mr. A. Calamand Mr. H.D. Lemmel Mr. J.R. Lemley (part-time) Mr. A. Lorenz (part-time) Mr. K. Okamoto Mr. L. Schmidt	(Chairman) (Scientific Secretary)
Mr. M. Vlasov	

10/ 11

.

List of Abbreviations used in this Document

CAJaD	Centr po dannym o stroenii atomnogo jadra i jadernykh reakcikh GKAE CCCP (Center for nuclear structure and reaction data of the USSR State Committee of the Utilization of Atomic Energy) at the Kurchatov Institute, Moscow.
CINDA	A specialized bibliography and data index on neutron nuclear data operated jointly by NNCSC, NDCC, NDS and CJD. The master file is maintained at NDCC. Publications are made by IAEA.
CJD	Centr po Jadernym Dannym, the USSR Nuclear Data Center at F.E.I. Obninsk.
Codata	Committee on Data for Science and Technology, of the Inter- national Council of Scientific Unions.
CPND	Charged-particle nuclear reaction data.
ERDA	USA Energy Research and Development Agency.
EXFOR	Exchange Format, initially developed for the international exchange of neutron nuclear data.
INDC	International Nuclear Data Committee.
INIS	International Nuclear Information System, a bibliographic system operated by the IAEA.
Japanese Study Gr	oup Study group for information processing in nuclear physics at the Tokyo Institute of Technology.
Karlsruhe CPND Gr	oup Charged particle nuclear data group at the Institute for Radiochemistry, Karlsruhe.
NDCC	Neutron Data Compilation Centre (Centre de Compilation de Données Neutroniques - CCDN) of the OECD Nuclear Energy Agency, at Saclay near Paris.
NDP	Nuclear Data Project at Oak Ridge for nuclear structure and decay data.
NDS	IAEA Nuclear Data Section, Vienna.
NEANDC	Nuclear Data Committee of the OECD Nuclear Energy Agency.
NNCSC	USA National Neutron Cross-Section Center at the Brookhaven National Laboratory, Upton, N.Y.
NRDF	Nuclear Reaction Data File System developed by the Japanese Study Group.

The bibliography of the Oak Ridge CPND group, now merged with the Oak Ridge Nuclear Data Project. Published in "Atomic Data and Nuclear Data Tables".

"Recent References"

The bibliography of the Oak Ridge Nuclear Data Project for nuclear structure data, including many references on CPND. Published in "Nuclear Data Sheets".

į.

ZAED Zentralstelle für Atomkernenergie Dokumentation (documentation center for atomic energy) at Karlsruhe.

.

MINUTES

I. Brief review of current and planned CPND compilation activities

- 1. Mr. Munzel reports on the CPND group at Karlsruhe. See <u>Annex 1</u>. In summary, the activities of the Karlsruhe CPND group are:
 - compilation of "integral CPND" (that is excitation functions and thick-target yields as defined on page 23),
 - estimation of excitation functions of nuclei for which no experimental data exist,
 - publication of handbooks for integral CPND.

No bibliography is compiled; the services of the Oak Ridge NDP and of INIS through ZAED are used.

Data are now compiled in a modified Exfor format. See <u>Annexes 8</u> to 10. The master library, for which input from other centres is welcome, will be made available to other centres for servicing users' requests for data retrievals.

For "integral CPND" a large user community is known in various fields of application such as isotope production, surface investigations, life sciences etc.

10

- 2. In the following <u>discussion</u> it is estimated that the "integral CPND" include only about 5% of all CPND, and that the workload of compiling "integral CPND" seems therefore to be manageable. At least 90% of all CPND is differential data, for which a relatively small user community exists, mainly in the field of basic research.
- 3. <u>Mr. Sokolovskij</u> reports on the activities of CAJaD. See <u>Annex 2.</u> In summary, the activities of CAJaD are:
 - bibliographic compilation in a format close to "Recent References". See the document <u>IAE-2403</u> covering references on theoretical work which is not included in "Recent References".
 - compilation of CPND, in a modified Exfor format. See Annex 11.

- services to data users upon request.

ċ.

The activities of the center are defined by a coordinating group of the State Committee on the Utilization of Atomic Energy.

CPND needed for fusion have priority.

4. Mr. Dunford reports on the CPND activities in the USA:

"The US activity in the CPND field remained unchanged since the last Consultants' Meeting in April 1974, (see INDC(NDS)-61). The reader is referred to that document for more detail.

The Charged-Particle Cross Section Data Center is located at the Oak Ridge National Laboratory and is now part of the Nuclear Data Project. The center continues to operate at a 0.5 man level.

The major activity is the compilation of a CPND bibliography. This bibliography is kept in a computerized file available to other CPND compilation centers. A Reaction List is published annually giving all new references since the last publication.

A file of experimental CPND is kept by the Center but is no longer actively maintained. No new data has been added in more than five years. Sol Pearlstein has prepared an evaluated library of CPND in ENDF format based on data systematics developed by Mr. Munzel. This library is available on request.

At the present time a complete review of the United States activities in the non-neutron nuclear data area is being carried out by the Brookhaven National Laboratory's National Neutron Cross Section Center (NNCSC) for the US Energy Research and Development Administration. The deliberations of this meeting will be of considerable importance in helping us determine the future role of the US in CPND.

NNCSC was selected to undertake this study because of its past success in organizing cooperative efforts such as the US neutron data evaluation and for its international contacts. As a part of this survey a questionnaire was sent to over 400 scientists in both the research and the applications community in order to determine their requirements. Over 100 responses were received in July and August primarily from the physics research community. A summary of the results of the survey is presented for information." See Annex 3.

- 5. The following <u>discussion</u> concerns the responsibilities of other nuclear data groups in the USA: Howerton's data center at Livermore can provide retrievals from the "Reaction List" reference file. ANC is one of the centers evaluating nuclear decay data, including those of transactinium isotopes. They have supplied some of the evaluations for ENDF/B-17 decay data for nuclear structure data, compilation and evaluation, but so far little support for CPND. -There is a loose cooperation between the NSRDS (National Standard Reference Data System) program of the National Bureau of Standards with the much larger data activities of ERDA. For example, both support the Table of Isotopes Project at Berkeley.
- 6. <u>Mr. Ohnuma</u> reports on the activities of the Japanese Study Group. See <u>Annex 4</u>. Summary: In 1974 a Study Group on information processing in nuclear physics was started in Japan. A Nuclear Reaction Data File (NRDF) has been designed and is being tested with various data sets as trial input. The file is to include all kinds of CPND such as angular distributions, polarization, asymmetry, excitation functions. A test-system NRDF-1 is in operation. A first revision, NRDF-2, is being designed.

No bibliographic compilation is made; existing files are used.

- 7. <u>In the discussion</u> it is clarified that the Study Group has not got the task to start a long-term compilation activity but has the task to perform an academic study on data processing.
- 8. <u>Mr. Lesca</u> reports that the activities of <u>NDCC</u> are presently restricted to neutron nuclear data. Any extension of the scope has to be discussed and approved by the Steering Committee. CPND for fusion may be considered first, if at all.
- 9. <u>Mr. Schmidt</u> reports that the <u>NDS</u> has no manpower for CPND compilation. NDS may be able to devote about 1/2 manyear to CPND dissemination within its service area (essentially East Europe and southern hemisphere) and to coordination by meetings.
- Concerning CPND activities in the UK, <u>Mr. Schmidt</u> reads out a letter by G. Dearnaley (see <u>Annex 5</u>), Harwell, on the use of CPND for surface materials analysis. (See Footnote.)
- 11. In the <u>discussion</u> it is stressed that the assessment of <u>data needs</u> is the responsibility of INDC and NEANDC.

Footnote: A relevant working paper was received only after the end of the meeting: B.Rose, "Compilation of cross-sections for ion beam analysis of materials", a working paper for the INDC Sub-Committee on Non-Energy Applications, Sept. 1975.

- 12. <u>Mr. Behrens</u> reports on the CPND activities of the ZAED at Karlsruhe. See <u>Annex 6</u>. ZAED is in charge of creating a national information system for physics data, including bibliographic services within INIS and retrieval services from available numerical data files.
- 13. In the following <u>discussions</u>, it is pointed out that the ZAED plans for an index to existing data compilations should be coordinated with similar plans at NDS and Codata. (<u>Action 12</u>)
- 14. <u>Mr. Brune</u> reports on CFND applications at <u>Studsvik</u> where proton microbeams are used for surface analysis. Data needs include primarily excitation functions of Proton and deuteron reactions with light elements such as B, C, N, O, F, P, S, Cl.
- 15. <u>Mr. Behrens</u> reports that a group under Prof. Hauser at the university of Köln, F.R. Germany, measures and compiles lowenergy CPND which lead over to <u>atomic and molecular reaction</u> <u>data</u>. The meeting felt that such data should not be discussed in the present meeting, but that the computerized compilation systems to be discussed should eventually be designed to allow for such data.

II. Bibliography

- 16. <u>Dunford</u> discusses the differences between existing nuclear data bibliographies (not considering photonuclear reactions which is a separate effort in the USA):
 - "Reaction List" of the Oak Ridge CPND group
 - "Recent References" of the Oak Ridge Nuclear Data Project
 - "Cinda" of the neutron data centers.

The USA would not like to continue all three reference compilation systems as distinct entities but assume the responsibility for maintaining a CPND bibliography. However, no conclusions have been reached how this responsibility would be implemented and where in the USA it would be maintained. Dunford asks for comments about the desirable features of this compilation, but he suggests that the center which will be in charge of it, must be permitted to make the final decisions about the structure of the system. Multilateral bibliographic input would be desirable, in particular from the USSR and Japan.

- 17. In the <u>discussions</u> it is stressed that a unified bibliographic system for all nuclear data would be desirable but that this could not be implemented under the present conditions. None of the existing bibliographic systems is flexible enough to include all nuclear data, and simple enough to be suitable for multilateral input and file exchange. The results of the discussion are summarized in <u>conclusions 4-10</u>, <u>recommendations 2-8</u>, and actions 1-8.
- 18. <u>Mr. Behrens</u> suggests that the input to a nuclear data bibliography could eventually be retrieved from <u>INIS</u>. In the discussion it is agreed that this would in principle be highly desirable, but that this was not possible with the present status of INIS, as previous contacts between NDS and the IAEA INIS Section had shown. Further investigations and actions in this direction were found desirable, see <u>conclusion 11</u>, recommendation 6, and action 6+7.
- 19. The meeting discusses the requirements for a <u>published</u> CPND bibliography. It is understood that there is a definite need, from the application oriented users' community, for a cumulative bibliography on "integral CPND" (compare <u>conclusions 1-3</u>). Considering that only about 5% of the CPND literature deal with "integral CPND", such a cumulative bibliography would have a volume of one hundred pages at maximum. A regular cumulative publication at perhaps two-years intervals appears to be desirable and feasible. A bibliography on "integral CPND", which would be application oriented, has no serious overlap with "Recent References", which is mainly oriented towards basic research. See the recommendation 7.
- 20. <u>Mr. Schmidt</u> announces that the <u>IAEA</u> could publish the CPND bibliography on two conditions, that is: the file must be the result of a truly international effort, and the number of copies sold must be more than 1000. However, also a publication as a report of less good quality may be considered.

<u>Mr. Behrens</u> announces that eventually <u>ZAED</u> could publish the CPND bibliography. Both, NDS and ZAED will investigate their publication possibilities (see <u>action 8</u>), based on a computer file provided by the USA. Several participants estimate that more than 1000 copies of a CPND bibliography could be sold.

21. Some participants express that in addition to the bibliography for "integral CPND", a cumulative publication of <u>"Recent</u> <u>References"</u> would be desirable for the use of the research community.

II. B.1 Adopting Exfor for the compilation and exchange of CPND

22. <u>Mr. Lemmel</u> gives a summary of the main features of the <u>Exfor system</u> developed by the four neutron data centres (<u>Annex 7</u>). It is stressed that Exfor defines an <u>exchange</u> format, and that each of the cooperating centres operates, according to its needs, different input, storage, computation, or output formats, which are all Exfor compatible. Exfor is flexible enough to allow for even unusual representations of experimental data, for all kinds of additional quantities and parameters, as well as for bibliographic, physics and bookkeeping information. At the same time Exfor is well enough structured that identification and processing of the information by the computer is possible.

The main problem to be discussed will be the generalization of the coding of reactions and quantities which are so far defined for neutron data only.

- 23. <u>Mr. Minzel</u> reports on the <u>CPND Exfor</u> system developed by the <u>Karlsruhe</u> CPND group. In this system, some additional keywords and codes were added to the neutron-Exfor system such, that the neutron-Exfor rules remain unchanged. A first draft of the CPND Exfor system (<u>Annex 8</u>) had been prepared early 1975. This had been discussed by the four neutron data centres at their meeting in March 1975, and some conclusions were issued (<u>Annex 9</u>). To the present meeting, a revised version of the Karlsruhe CPND Exfor system was submitted (<u>Annex 10</u>).
- 24. <u>Mr. Ohnuma</u> reports that a computerized conversion between the <u>Japanese NRDF</u> system and a modified Exfor system seems to present no principal difficulties. Details of the NRDF/ Exfor compatibility must still be studied.
- 25. <u>Mr. Sokolovskij</u> presents sample entries for some CPND functions (<u>Annex 11</u>) prepared at CAJaD in the format of the first version of the Karlsruhe CPND Exfor system. He stresses the necessity of having an agreed common format for CPND and concludes that a modified Exfor system as suggested by Karlsruhe is well suitable for the exchange of CPND. The changes required in Exfor should not interfere with the work of the neutron data centres.
- 26. <u>Mr. Dunford</u> states that there is presently in the USA little financial support for CPND compilation. But there is strong interest to have the CPND exchange format designed as close as possible to the neutron Exfor system.

- 27. In the following <u>discussions</u> it is concluded that there is no alternative proposal and that the detailed discussions for developing a CPND exchange system should be based on the second Karlsruhe version of the CPND Exfor system. See <u>Con-</u> <u>clusions 13 + 14</u>, <u>Recommendations 13 + 14</u>, and <u>Actions 13 + 14</u>.
- 28. The participants agree that it should be tried to have, on a long-term scale, a single Exfor system for CPND and neutron nuclear data. Therefore, the modifications of the Exfor system to be proposed should be such that there is no interference with the present neutron Exfor system. They would be implemented such that any differences between the CPND Exfor system and the present neutron-Exfor system are computerintelligible by special keywords. Thus it is made possible that the computer programs operating the present neutron-Exfor system can gradually be expanded to include the specific CPND features, although it is recognized that decisions in this direction are up to the neutron data centers.

II. B.2 Scope of CPND compilation

29. <u>Mr. Münzel</u> explains the <u>priorities</u> of CPND compilation according to his experiences with the users community in F.R. Germany.

These are:

excitation functions for the formation of residual nuclei in ground-state or metastable state after prompt gamma de-excitation. The residual nucleus is of primary interest, disregarding through which reaction it was formed. For practical applications the shortest life-times to be considered are in the order of magnitude of a minute.

- thick target yield data.

both for targets with $Z \ge 4$ and projectiles with $Z \ge 1$ and $A \ge 1$. If necessary, the restriction with respect to Z of the target material could be changed.

For building up the file for integral CPND one has to decide on the priority list for preparing input. After the comparison of different possibilities the following list was accepted:

Priority	Projectile	Lowest projectile energy of excitation function
1	р	< 50 MeV
2	α,	< 100 MeV
3	đ	< 50 MeV
4	He-3	2100 MeV

First all data for p-reactions will be compiled independent of the time of publication. Then α -reactions will be considered, etc. Once a reaction-type is completed it will be kept up to data. Of course, if other reactions are compiled they will also be put on the

.20 Minutes

file. The extension of the priority list to higher energies and heavier projectiles should be discussed at a later time.

Primary interest is in experimental data. But theory and systematics are also considered to be important for deducing excitation functions for the many reactions for which no experimental data exist.

Deduced data, such as integral cross sections obtained from angular distributions are not considered (mainly due to manpower limitations), but such data would be useful.

Absolute and relative data are compiled.

It is questionable, whether within a defined scope all existing data should be compiled or whether a selection with respect to reliability would be feasible. This topic should be taken up again after more experience has become available.

- 30. <u>Mr. Ohnuma</u> explains that the Japanese Study Group is testing the NRDF system and has coded a number of complex data. No systematic compilation is yet envisaged, and therefore no priorities of reactions, and quantities to be compiled have been established.
- 31. <u>Mr. Sokolovskij</u> says that the USSR needs for non-neutron nuclear data have been reported at the 1974 Meeting, see INDC(NDS)-61 page 82. Priorities are approximately in the following sequence:
 - 1. fission product decay data
 - 2. nuclear structure data
 - 3. decay data of radioactive nuclei
 - 4. activation cross-sections by charged particles and photons
 - 5. thick target yield data

For such data, bibliographic and numeric data files are or will be maintained. The USSR is ready to participate in bilateral agreements on the exchange of such data, possibly on the basis of a geographical sharing of compilation workload. For the near future, the USSR is looking forward towards a data exchange with Mr. Minzel's group and with Mr. Fuller's group. It is hoped that a modified Exfor format as to be defined at this meeting, will be acceptable also to Mr. Fuller for photonuclear reaction data.

- 32. <u>Mr. Dunford</u> says that there exists in the USA the Oak Ridge compilation of CPND (<u>action 10</u>). However, nothing has been added to this file in the past five years. In the USA it is felt that the scope for CPND compilation should be determined by the prospective usefulness to customers. The scope outlined by Mr. Minzel appears to be suitable both for the bibliography and the numerical data compilation.
- 33. The meeting agrees to restrict the scope of the published bibliography and the initial CPND compilation to "integral CPND". See <u>conclusions 1-3</u> and <u>recommendation 3</u>. The corresponding computer systems should, however, be designed such that they allow also the coding of differential CPND and photonuclear reaction data. Heavy-ion reaction data can probably be coded with the Exfor modifications agreed at the present meeting.

34. The meeting agrees that within the scope as outlined above, priority should possibly be given to data needed for specific purposes such as <u>fusion</u>. See <u>conclusion 23</u>, <u>recommendation 21</u> and <u>action 11</u>.

II. B.3 Distribution of compilation workload

35. <u>Mr. Münzel</u> expresses the willingness of the Karlsruhe CPND group to continue compiling "integral CPND", subject to the availability of funds. <u>Mr. Sokolovskij</u> and <u>Mr. Dunford</u> express the willingness of the USSR and USA respectively to contribute to this effort, and a scheme of cooperation as expressed in conclusion 12, recommendations 9 - 12, and action 9 is assumed.

II. B.4 Technical details of the CPND Exfor system

36. The meeting discusses the technical details of the CPND Exfor system on the basis of the Karlsruhe proposal given in <u>Annex 1C</u>. The results are summarized in the "Agreements about the CPND Exfor system" on page 31.

II. B.5 Organization of cooperation

- 37. The meeting discusses technical details of cooperation and decides to follow generally the procedures established among the four neutron data centers, as layed down in <u>conclusions 15-17</u> and <u>recommendations 15-16</u>.
- 38. It is felt that the IAEA should continue to convene at regular intervals consultants meetings between the cooperating centers. The date of the next meeting is envisaged for the week 26-30 April, in the same week as the next meeting of the four neutron data centers.

Minutes

II.C Evaluation of CPND

- 39. It was found that for CPND the <u>problems of evaluation</u> are different from those of neutron data. For many CPND reactions only a single measurement exists, and for many more there are no data at all. The main purpose of CFND evaluation is therefore to give the best guess of unmeasured cross-sections.
- 40. A CPND cross-section <u>library in XNDF/B</u> format has been issued by NNCSC based on Mr. Minzel's calculations published in Landolt-BURNStein, vol. 1, 5c. This library is available from the other pertinent nuclear data centres.

In general, to include CPND in the ENDF/B format requires a generalization of this format which is presently being discussed in the USA, see <u>annex 13.</u>

41. For some further details see <u>conclusions 18-21</u>, and <u>recommendations</u> <u>17-18</u>.

II.D Service to users

42. The findings of the meeting with respect to services to data users are summarized in conclusions 22-23 and recommendations 19-21.

CONCLUSIONS AND RECOMMENDATIONS

User needs and data scope (Agenda items I, II.B.2)

Conclusions:

- C 1. The need of various users for compilations of charged-particle nuclear reaction data (CPND), in particular of integral CPND cross-sections, has been assessed in earlier meetings. It is strongly felt that the arguments given at these meetings stressing the importance of the compilation of such data, are still valid. Therefore, urgency should be given to corresponding compilation efforts.
- C 2. It is realized that for data applications primarily integral CPND are needed, and such data should be given priority. The interest for differential CPND comes mainly from the research community.
- C 3. In the present document, the term <u>"integral CPND"</u> is understood to include
 - excitation functions for the formation of residual nuclei in ground-state or metastable state;
 - thick target yield data;

both for targets with Z > 4 and projectiles of protons and heavier particles.

Recommendation:

R 1. Within the field of CPND, the compilation and exchange of "integral CPND" should be given priority.

CPND Bibliographic System (Agenda item II.A)

Conclusions:

The meeting discussed various possibilities for oreating an international CPND bibliography, and came to the following conclusions:

- C 4. Since the USA offered to continue to maintain a worldwide CPND bibliography, it is suggested that a new appropriate system or a revised form of an existing system be developed in the USA, but that the following requirements expressed in the meeting be considered.
- C 5. At present, there exist three nuclear data bibliographies: Cinda, Recent References, Reaction List, which are partially overlapping. For each of them some modifications would be desirable to make it suitable as an international CPND bibliography.
- C 6. If a Cinda-type system is used, more space for the reaction is needed than in the neutron Cinda, in order to allow also for the coding of heavy ion reactions. This means, that either the free text comment field must be shortened to have more space for the coding of the reaction, or that the system must be expanded to more than one card per input record.
- C 7. If a Recent-References type system is used, input and file should preferably be restricted to the standard BCD character-set, in order to facilitate international exchange of the file. The lab of data origin should possibly be entered in retrievable form using the Exfor lab-codes. A feature for blocking different references that refer to the same data set, is desirable such that a data-set oriented sort is possible. The data-type (experimental, theoretical, evaluated) should be entered in retrievable form.
- C 8. In either case, the following features are desirable:
 - a) For charged-particle reactions, information should be entered in retrievable form, indicating whether the reference considered contains integral CPND or other data.
 - b) Publication in a compact handbook should be possible.
 - c) The system should be designed such that multilateral input is possible as well as easy retrievals on a variety of computers.
- C 9. The new system should be capable of including, by machine conversion, the old bibliography of the Reaction List and perhaps the relevant part of Recent References, even if these machine converted entries do not fulfil all of the specifications of the new system (example: missing lab. code).
- C 10. The feasibility of having a single bibliography system for all nuclear data, including neutron data, should be investigated.
- C ll. It is desirable to investigate the feasibility of deriving a nuclear data bibliographic file from a more general bibliographic system, especially from INIS.

Recommendations:

R 2. The meeting appreciates the offer of the USA to continue to assume the primary responsibility, in cooperation with other data centres, for a worldwide CPND biblic graphic system. It is recognized that the centre responsible for this system should decide on its structure, but it is recommended that the following features be seriously considered when developing the CPND bibliographic system:

- a) Publication of a compact handbook should be possible, which should be data-set oriented rather than reference oriented.
- b) Publication of such a handbook for "integral CPND" only should be possible.
- c) A cumulative publication including earlier CPND bibliographies should be possible.
- d) The coding of the CPND reactions should allow for heavy-ion reactions; retrievals should be possible for target nuclei, incident particles, outgoing particles and residual nuclei.
- e) The input and the master file should employ the standard BCD character set.
- f) Entries should contain the laboratory of data origin using the Exfor lab-codes.
- R 3. It is recommended that CAJaD and a Japanese center regularly provide input to the CPND bibliographic system for the Russian and Japanese language publications. This input should have the general form of Recent References, until such time that the USA in consultation with the cooperating centers determines that another input format is needed.
- R4. Priority should be given to the coverage of journals. It should be investigated how many important data sets are published only in laboratory-reports or conference-proceedings. Depending on the outcome of such investigations, such literature should eventually be included in the CPND bibliography.
- R 5. The bibliographic information should be freely exchanged, and the master file should be easily accessible by all cooperating centres and groups. The centre in charge should send, in regular intervals (e.g. every six months), an update tape of the CPND bibliography to the Karlsruhe CPND group and to CAJaD, and to other cooperating centres upon request.
- R 6. It is recommended that ZAED and NDS investigate the feasibility of Actions deriving input for a nuclear data bibliographic file from a more general bibliographic system, especially from INIS.
 - R 7. The meeting recommends the publication of a cumulative bibliography to "integral CPND". Later cumulative publications should be envisaged at two-years intervals. NDS and ZAED should investigate the technical possibilities for such publications based on a com- bputer file provided by the USA. A draft of the bibliography should be submitted to the cooperating centres for discussion.
 - R 8. The published bibliography should include information on evaluated integral CFND, but references to experimental and evaluated data must be distinguishable.

Action 2.

Actions 3•+4•

1

Action 5.

- 6.+7.
- Action 8.

Compilation and exchange of CPND (Agenda item B.2)

The meeting discussed the scope and distribution work between the CPND compilation groups and came to the following <u>conclusions:</u>

C 12. The meeting recognizes the value of past compilation activities and urges the continuation and possibly the expansion of these activities. In particular, the efforts of the Karlsruhe CPND group for a systematic compilation of "integral CPND" in the Exfor format is recognized as most valuable. The recommendations of this meeting are based on the assumption that the Karlsruhe CPND group will maintain the Master Data File for "integral CPND", which would be the core of an international network of CPND compilation and exchange.

Recommendations:

- R 9. Existing CPND compilation activities should possibly be expanded. They should continue within an international coordinated effort of CPND compilation and exchange. All CPND should be freely exchanged, and the computer files should be easily accessible by all cooperating centres and groups.
- R 10. The Karlsruhe CPND group should maintain the CPND Master Data File. Data compiled at other centers should be sent to Karlsruhe for updating the Master Data File. The Karlsruhe CPND group should make available to the cooperating centres either copies of the entire Master Data File or copies of update tapes.
- R ll. a) The Karlsruhe CPND group should continue to compile "integral CPND" except as noted below.
 - b) CAJaD should compile "integral CPND" produced in the USSR.
 - c) The USA Center should compile "integral CPND" from USA and Canada in the case that such data cannot be compiled directly from published literature, and should make such data available upon request.
- Action R 12. Pertinent groups in Japan as well as interested groups in other 9. countries should investigate the feasibility of participating in the CPND compilation effort.

See also the related actions 10.-12.

The CPND Exchange Format (Agenda item II.B.1)

Conclusions:

- C 13. The Karlsruhe CPND group and CAJaD had prepared trial compilations of integral CPND in a modified Exfor format which were discussed by the four neutron data centers, and at the present meeting. It was concluded that a modified Exfor format provides suitable means for the international exchange of CPND.
- C 14. The investigations of the Japanese Study Group have indicated the desirability and the feasibility of creating a CPND File which would be used by nuclear physicists in the field of basic research as well as for applied purposes.

Recommendations:

- Actions R 13 A modified Exfor format should be used for the exchange of CPND.
- 13.+14.
 - R 14. The Japanese Study Group should continue its effort; the system to be developed should be operated on a long-term basis; it should be developed with due consideration for participating in the international CPND exchange.

For detailed agreements about the CPND Exfor system see page 31.

Organization of cooperation (Agenda item II.B.4)

Conclusions:

- Action C 15. Generally, the mechanisms of data exchange as developed for 20. neutron data, are adopted.
 - C 16. In general, the rules contained in the Exfor Manual for neutron data will apply, but an addendum will be needed for special rules required for CPND.

Action C 17. The cooperating CPND centres are included in the update and 19. exchange system of Exfor dictionaries.

Recommendations:

- R 15. The IAEA should continue to coordinate the activities of CPND centers and groups, and should continue to convene, at regular intervals, consultants meetings between representatives of the cooperating CPND centers. Copies of bilateral correspondence on CPND compilation and exchange should be sent to NDS.
- R 16. NNCSC should continue to maintain the Exfor Manual for neutron data; NDS should produce an addendum to it for CPND. NDS should maintain the Exfor dictionaries for neutron data and CPND.

<u>CPND evaluation</u> (Agenda item II.C)

Conclusions:

- C 18. CPND evaluation has been discussed. A detailed discussion of evaluation methods appears to be premature, but should be reconsidered at some later time.
- C 19. The <u>purpose</u> of CPND evaluation is to give users recommended values for the quantities they are interested in. Any method of obtaining such recommended values is included in the term "evaluation". The users should be supplied also with information about the reliability of the data.
- C 20. Evaluated CPND can be included in the CPND Exfor file in such a way that they can be readily distinguished from other types of data. It is however recognized that Exfor is not suitable for a comprehensive evaluated CPND library similar in concept to ENDF/B.
- C 21. It was noted that a generalized ENDF format suitable for all nuclear data is being discussed in the USA.

Recommendations:

- R 17. Existing CPND evaluations should be distributed to the other centers, in any suitable form but preferably on magnetic tape, along with adequate documentation.
- Action R 18. Interested[#]centers should send to NNCSC comments on a generalized ENDF/B system to be developed. (See <u>Annex 13</u>.)

Action 19.

Services to users

(Agenda item II.D)

Conclusions:

- C 22. For integral CPND data a large user community prefers to have a handbook with data on their desks. In addition there will be the need for computer retrievals from the computer file, in order to have more up-to-date information.
- C 23. In addition, specialized CPND publications may be needed. NDS is considering the needs for publishing a specialized compilation of CPND required for nuclear fusion development.

Recommendations:

- R 19. The Karlsruhe CPND group should continue to publish compilations on "integral CPND".
- R 20. The following centres should provide computer retrievals from the CFND Exfor Library to the respective service areas:

NNCSC to USA and Canada CAJaD to USSR ZAED to F.R. of Germany NDCC to other European OECD countries and to Japan NDS to its service area as defined within the neutron data cooperation.

Action R 21. The compilation of specific data required for specialized 11. publications, e.g. on CPND for fusion, should be given priority.

AGREEMENTS ABOUT THE CPND EXFOR SYSTEM

- 1. It is agreed that a modified Exfor system should be adopted for the compilation of CPND.
- 2. The general structure of the neutron Exfor system shall remain unchanged. The modifications to be made in some details of the structure and contents should not interfere with the continuing operation of the neutron-Exfor system.
- 3. It should be possible to handle CPND Exfor files and neutron-Exfor files with the same computer programs, although some subroutines may be different.
- 4. The second version of the Karlsruhe CPND Exfor is generally adopted, however some further modifications are desirable as described in the following.items 5-28.
- 5. The information coded under the keyword <u>REACTION</u> shall have the following major fields:
 - 1. Reaction
 - 2. Quantity
 - 3. Data-Type (optional)
- 6. The <u>Reaction</u> is coded in the form (Z-S-A (P,N+HE3+4A) Z-S-A, Quantity, Data-Type)

Some special rules are:

- a. The residual nucleus is usually defined as the heaviest of the reaction products. In certain cases (compare items f. and i. below) the residual nucleus is not defined.
- b. Different outgoing particles within the reaction-parentheses are separated by plus-signs.
- c. The outgoing particles are sorted such that smaller Z and A comes first. N sorts before P, and T sorts before HE3.
- d. Within the reaction-parentheses, all particles heavier than an alpha particle, are coded in the same way as the targetnucleus.
- e. A number immediately preceding a particle code indicates the multiplicity of this particle, e.g. 4A in the example above.

분

f. Some special reactions are coded in the following form: (Z-S-A(P,ABS), - proton absorption (Z-S-A(P,TOT),- total cross-section for protons (Z-S-A(P,T+X), - emission of tritons and possibly other unidentified particles after proton absorption In the above examples, the residual nucleus, in general, can-

g. An unidentified complex reaction leading to a specific residual nucleus, e.g. when the target is a sample with natural isotopic abundance, is coded in the following form:

(Z-S-0(P,X)Z-S-A,-

not be coded.

h. Scattering may be coded as

(Z-S-A(P,P)Z-S-A,-

But when elastic, inelastic or total scattering must be distinguished, this is coded in the form

(Z-S-A(P,EL)Z-S-A,-(Z-S-A(P,INL)Z-S-A,-(Z-S-A(P,SCT)Z-S-A,-

- i. Fission is coded as (Z-S-A(P,F)FF,
- j. The coding of the residual nucleus within the reaction is optional. For integral CPND it is obligatory, except where not appropriate.
- 7. The discussion of coding reactions, where the <u>sequence</u> of the outgoing particles matters, was postponed.

Action 15•

 \mathcal{C}

8. For the <u>quantity</u>, the following definition and sequence of subfields was agreed. Tests, whether this scheme is suitable for complex multidifferential quantities, have to be made.

(Reaction, Quantity, Data-Type)

Branch, Parameter, Particle-considered, Modifier

In the "branch" subfield information is given, whether it is a partial reaction. See the neutron-Exfor codes PAR MS GND CN DI etc.

In the "parameter" subfield information about integral or differential cross-sections is given. See the neutron-Exfor codes DA LEG DA/DE etc. For integral cross-sections the code SIG is introduced.

In the "particle-considered" subfield, the particle-code is entered to which the code in the "parameter" field refers. The use of this code is the same as in the neutron-Exfor.

The "modifier" subfield contains any additional information about the representation of the data, e.g. REL.

- 9. The Data-type field may include codes such as EXP or THEO.
- The Karlsruhe CPND-Exfor sample presented contains <u>pointers</u>, attached to a data-column heading, in col. 1 instead of col.
 It was agreed, that in transmission tapes, the pointers should be in col. 11.
- 11. The coding of <u>multiple reactions</u> within the same subentry as used in Entry 60001.003 was accepted. This formalism should not be used for any data types that are not directly interrelated.
- 12. The proposed coding of information under the new keyword <u>DECAY-DATA</u> was accepted, although there was some concern about the readability.
- 13. The keyword PART-DET remains reserved for use in the way of the neutron Exfor. The information format and contents as proposed by Karlsruhe is to be entered under the new keyword <u>RAD-DET</u>. If the keyword RAD-DET is present, the keyword <u>DECAY-DATA</u> is obligatory.

14. The keyword ADD-RES for additional results is accepted.

· 34 CPND Exfor

- 15. The keyword <u>MONITOR</u> as well as the format of the coded information is accepted, but the sequence of accession-number and reaction within the parentheses is inverted. The word MONITOR seems to be the best word for this keyword as long as STANDARD is not free due to its different use in the neutron-Exfor. A data-heading keyword MONIT was introduced corresponding to STAND in neutron-Exfor.
- 16. The coding of the institute under <u>FACILITY</u> was agreed as proposed, but the entering of this institute code is optional.
- 17. <u>SAMPLE</u> information, which is always regarded as essential, is entered mainly in free text.
- 18. Within <u>free text</u> abbreviations can be used to reduce the workload of compilers. But these abbreviations should be understandable, since no expansion in an output format is envisaged.
- Action 19. The <u>lab</u> and <u>reference</u> codes and explanations proposed by 16. Karlsruhe are added to the dictionaries.
 - 20. <u>Quantity-codes</u>: The code FCR is not necessary. The generalized meaning of IND and CUM is accepted. For outgoing particles the code COMPLEX is changed to X. The code SF is accepted for use under RAD-DET and DECAY-DATA but not for use under REACTION, where a zero indicates spontaneous reactions without an incident particle.
 - 21. <u>Method-codes</u> are accepted, except HILAC which is included in LINAC which is to refer to all linear accelerators.
- Action 22. Length of codes. The neutron centres should investigate what 17. restrictions in the length of codes (e.g. method or status codes) are required by their system.
 - 23. The <u>dictionary of method codes</u> should get flags indicating methods which generally apply only to CPND or only to neutron data.
 - 24. The code <u>SID</u> is cancelled, and the general code for solid-state detectors is used instead. Similarly, <u>LISCIN</u> is cancelled.

- 25. <u>MISC 3 and MISC 4</u> are cancelled because they are superseded by the use of pointers.
- 26. The Library name is added in field 4 of the TRANS record.
- Action 27. Col. 67 which identifies the compiling <u>data centre</u> should no 18. longer be restricted to numericals, and characters will be accepted for CPND Exfor. Fast action is given to the various centers to investigate whether this would cause difficulties.

A = CAJaD, B = Karlsruhe CPND group, C = NNCSC, D = NDS, Z = Japanese Study Group.

28. Discussions on the subject of CPND compilation and exchange are continued by means of "CP-Memos" similar to the "4C-Memos" in the field of neutron data. The memos are numbered in the form Memo CP-n/m, where n is the centre-identification character and m the chronological memo number within the centre.

ACTIONS

Actions concerning the CPND bibliographic system

Action Nr.	Action on	Action
1	USA	to provide a computer file suitable for pro- ducing a compact cumulative bibliographic handbook on "integral CPND". Compare action 8 below.
2	Münzel	to send to Dunford information concerning the retrieval of references to "integral CPND" from the Reaction List of McGowan.
3	CAJaD	to regularly provide input to the CPND bibliographic system for USSR publications.
4	Ohnuma -	to investigate possibilities for Japanese input to the CPND bibliographic system.
5	Münzel	to check against INIS whether lab-reports contain important CPND data which should be included in the CPND bibliography.
6	NDS	to send to ZAED the specifications required for retrieving from INIS input to a nuclear data bibliography.
7	NDS + ZAED	to investigate the feasibility of deriving input for a nuclear data bibliographic file from INIS.
8	NDS and ZAED	to investigate the technical possibilities at IAEA and ZAED respectively of publishing and distributing a cumulative CPND bibliography, from a computer file provided by the USA, and to submit a draft of this bibliography to the cooperating centers for discussion.

Actions concerning CPND compilation

9.	NDS Japanese Study Group	to contact interested Japanese groups in order to have at the next meeting a statement on the feasibility of Japanese participation in the CPND compilation effort.
10.	Dunford	to arrange for sending a tape copy of the Oak Ridge CPND Library to the Karlsruhe CPND group.
11.	NDS	to supply the CPND compilation groups with a list of CPND reactions needed for fusion.
12.	ZAED + NDS	to keep each other informed about the project "compilation of data compilations". Exchange relevant documents, indexes, etc. and inform each other about available files and about any progress in the field.

Actions about the Exfor system

13.	NDS	to send the present Exfor input check program with documentation as existing to Sokolovskij.
14.	NDS	to send to Kronenberg, Karlsruhe, all Exfor programs which have been changed and added since the last transmission of programs to him.
15.	NDS	to test the feasibility of the agreed quantity structure. This is an urgent action, and any deficiency of this quantity structure must be communicated soon, at the latest some weeks before the next meeting.
16.	NDS	to update the dictionaries with the codes agreed in connection with CPND.
17.	NDS	to investigate the actual limitations imposed by existing computer programs to the length of codes, and notify CPND centers if some of the introduced codes exceed these limitations.

39 Act

- 18. NNCSC to investigate whether an alphabetic character
 NDCC instead of a numerical in column 67 and in the
 NDS first position of the accession numbers causes
 CJD difficulties in existing programmes. The results should soon be communicated to NDS.
- 19. NDS to send the latest version of the EXFOR dictionaries on tape to Kronenberger and Sokolovskij, and to include the cooperating CPND centres in the regular transmission of dictionary updates.

Actions about the organization of cooperation

20. NDS to prepare a Protocol on the CPND cooperation and circulate it for acceptance.

Actions concerning evaluated CPND

21. All to submit to NNCSC comments on desirable features participants of a generalized ENDF/B format.
Karlsruhe Charged Particle Group

Opening Statement

H. Münzel

In a summarizing report A. Calamand has shown, that there are many users of Charged Particle Nuclear Data (CPND) working in such different fields as Material Science, Medicine, Reactortechnology, Biology, Nuclear Physics, Chemistry, etc. According to this report the majority of these users are especially interested to get informations about the amount of activity formed during irradiations. For this purpose they need formation cross sections or thick target yields for the ground and/or the metastable states of the produced radionuclides. Therefore we, i.e. the Charged Particle Group at the Institute for Radiochemistry of the Nuclear Research Center Karlsruhe, decided to concentrate our efforts on this kind of "integral gata". We are, of course, aware of the fact, that there are users who are interested in data about angular distributions etc But because about 95% of the publications dealing with CPND contain such differential data, a very large number of scientists would be needed for a complete compilation. Before starting such a program one should check very carefully, if the time saved on the side of the users justifies this effort.

The scope, content and format of the CPDN - File proposed by the Karlsruhe Charged Particle Group shall be described briefly. As already mentioned we propose, that the compilation should contain all published values for the above defined integral data. The file should include absolute and relative data as 42 Anner I

well as evaluated data. For practical reasons

we restricted the compilation to targets with $Z \ge 4$ and projectiles with $Z \ge 1$ and $A \ge 1$. The file should also contain all relevant data needed for an evaluation, like the decay data used in the analyses of the measured data.

In respect to the bibliography we will rely on the "McGowan Reaction List" and on the INIS - output.

In the moment we do not intend to evaluate recommended data from the experimental values. But we consider to check the different calculation procedures with the aim to provide the users with "calculated" excitation functions and thick target yields.

In the last year we were actively engaged in developing a format for the storage of the compiled data on a magnetic tape. After checking different possibilities we decided to go ahead with a modified version of the EXFOR - System. The proposed modifications should be discussed in detail during this meeting.

We assume that most of the users prefer strongly to have the compilation available on their desk. Therefore, the major output of our compilation efforts will be some kind of book, which should be updated periodically We will also provide as service to german users retrievals from the file. We hope, that other Centers, like the NDS of the IAEA, will provide similar services to users outside of the FRG.

Our plans for the future are not fixed yet. Just now it is again

431 Annex Karlsruhe

under discussion how many scientists should be actively engaged in the compilation of Nuclear Data at the Nuclear Research Center Karlsruhe. If funds are made available we will start new with the routine compilation of CPND within the scope outlined above using the following order of priorities:

Projectile		Projectile-Energy	
1)	p	< 50 MeV	
2)	He-4	< 100 MeV	
3)	d	< 50 Mev	
4)	He-3	< 100 Mev	

ACTIVITIES ON COLLECTION, EVALUATION AND DISSEMINATION OF NON-NEUTRON NUCLEAR DATA IN THE USSR

Yu.I. Grigor'yan, A.E. Ignatochkin, L.L. Sokolovskij and F.E. (hukreev I.V. Kurchatov Institute of Atomic Energy Centre for Data on the Structure of the Atomic Nucleus and Nuclear Reactions, USSR State Committee on the Utilization of Atomic Energy

ABSTRACT

The article describes the present status of collection, evaluation and dissemination of non-neutron nuclear data by the Centre for Data on the Structure of the Atomic Nucleus and Nuclear Reactions, USSR State Committee on the utilization of Atomic Energy. The structure of the Centre itself, its computer facilities and its co-operation with outside organizations are indicated and its functions and plans of activity are considered.

The Centre for Data on the Structure of the Atomic Nucleus and Nuclear Reactions (CAJaD) of the USSR State Committee on the Utilization of Atomic Energy was established in 1972 and is the organization in the USSR dealing with collection, evaluation and dissemination of non-neutron nuclear data.

The Centre not only collects data and analyses requests from users of non-neutron nuclear data but also organizes work on evaluation of data which are needed for solving scientific and technical problems and for developing fundamental research in the USSR. The evaluation work is carried out both by the Centre's staff and by qualified groups of physicists from institutes of the USSR State Committee on the Utilization of Atomic Energy, the USSR Academy of Sciences and higher educational institutions. Preparation of recommendations on uniform methods of nuclear data evaluation forms a large part of the Centre's activities.

The Centre has a 1010-V and a NOVA-1200 computer. It has a system of programmes for storage of data in the form of files on magnetic tapes and for data preparation for input into a library and formation of libraries, and also possesses a retrieval programme and a set of auxiliary programmes needed to answer data requests and to meet the Centre's needs for the intermediate stages of work.

I. STRUCTURE AND TECHNICAL EQUIPMENT OF THE CENTRE

The Centre's organizational structure is determined by its functions, as reflected in the title of this article. At present, it has a staff of 15 (6 physicists and 9 technicians) forming five groups.

Analysis of Requests, Compilation and Evaluation Group

This group is responsible for generation and maintenance of files for evaluated non-neutron nuclear data and other files called for by users' requests.

It performs analysis of requests from users of non-neutron nuclear data and prepares replies to these requests. A part of the compilation and evaluation work is done by this group. In addition, one of its functions is to develop uniform methods of evaluating non-neutron nuclear data and to recommend these methods to evaluation and compilation groups in other institutes. It also carries out preliminary analysis of data received at the Centre before they go to the literature scanning group.

Literature Scanning Group

The function of the literature scanning group is to sort the information material received at the Centre (papers, preprints, reports and numerical data) in order to distribute it on the basis of subject to the groups outside the Centre which compile key-word abstracts according to the Centre's rules. The finished abstracts are returned to the scanning group, where they are finally edited and entered in the bibliographic reference file.

Mathematical Software Group

Its work includes updating and modifying system programmes for standard mathematical treatment by the 1010-V*and NOVA-1200 computers, as applicable to the Centre's functions, generation of autiliary programmes for mechanizing preparation of information for input into the existing computer libraries. retrieval of the necessary information from both the data libraries and the bibliographic reference library, mechanization of evaluation of nuclear data and other types of processing of numerical information stored at the Centre.

Group for Technical Preparation and Processing of Information

The group transfers the information material to temporary carriers (punched tape), technically edits and corrects the material, feeds it to permanent information carriers (magnetic tape), modifies the format of the input array into a form convenient for retrieval and has custody of the mathematical software archival file and computer libraries.

Group for Maintenance of Technical Equipment

This Group's functions are to ensure steady operation of all technical equipent of the Centre, carry out preventive maintenance, modernize some modules of 'erminals,fabricatedevices to facilitate the work of operators and duplicate information material.

Technical equipment of the Centre

The figure attached gives a block diagram of the Centre's technical equipment. At present, it has two computers, of which the 1010-V (1) has a working storage space of 32kbyte and the following set of peripheral equipment:

- A minidisk (3) with a capacity of 800 Mbyte;
- Two NML-67 magnetic tape units (4) capable of reading tapes from IBM magnetic tape units;
- An alpha-mumerical printer(5);
- Two alphamumerical display devices (6);
- A punched-tape input and output device (7):
 Two "297" teleprinters (8);
 A 192N teleprinter (10)

The second computer (2), a NOVA-1200, has a crossing storage space of 4 K words and one ASR-33 peripheral device.

In addition, the Centre has two ES-9021 devices (9) used for punching data and bibliographic references on the preliminary carrier (eight-track punched tape).

Translater's note. If these items are not of Soviet manufacture, their names <u>*</u> should be 1010-B, 192H and EC-9021, respectively.

When necessary, the Centre makes use of the facilities of the Central Computer Complex of the I.V. Kurchatov Institute of Atomic Energy, which is equipped with BESM-6 computers. In the near future, the Centre expects to have a direct connection to these computers.

2. THE CENTRE'S CO-OPERATION WITH OUTSIDE ORGANIZATIONS

It has already been mentioned that the Centre is the main organization in the USSR dealing with collection, evaluation and dissemination of non-neutron muclear data.

The Nuclear Data Commission of the USSR State Committee on the Utilization of Atomic Energy and its Co-ordination Group for Non-neutron Nuclear Data determine the whole activity of the Centre.

In co-operation with the Centre and on the basis of analysis of users' requests, the Co-ordination Group determines the range of problems relating to evaluation and compilation of non-neutron nuclear data to be handled by the appropriate groups at the institutes of the USSR State Committee on the Utilization of Atomic Energy, the USSR Academy of Sciences and higher educational institutions. The Co-ordination Group also prepares recommendations for the research laboratories of these institutes on the measurement of the necessary non-neutron nuclear data and may amend their research plans. The Centre is responsible for overseeing compliance with the recommendations of the Nuclear Data Commission and the Co-ordination Group.

3. COMPUTER SOFTWARE OF THE CENTRE

The Centre's technical facilities permit substantial automation of both the preparation process and the use of available data.

At present, the Centre has three types of computer library. The first is the "reference" library with bibliographic references containing information on authors and the place of publication and a short abstract prepared according to definite rules facilitating automation of the process of searching for papers on a given subject. Such references will henceforth be called abstracts for short. The second, the "data" library, includes experimental data on the properties of specific nuclei. The evaluated data available at the Centre are kept separately. Finally, the "little" library is an intermediate one and used mainly for temporary storage of information which is in the process of preparation for inclusion in the other two libraries and for filing the computer software and other textual materials.

For technical preparation and use of the above libraries there is a set of programmes, which can be divided into three parts:

- programmes for expansion of the libraries;
- duplicating and auxiliary programmes;
- programmes for work using the libraries.

4. FUNCTIONS AND PLANS OF ACTIVITY

The Centre has to provide non-neutron nuclear data for the following principal areas of data application:

- reactor engineering;
- controlled fusion research;
- technical methods for safeguards systems;
- isotopic analysis of substances by muclear-physical methods;
- production and application of artificial radioisotopes;
- shielding and dosimetry;
- medical applications of radioisotopes;
- nuclear physics, astrophysics, etc.

In reactor engineering, a substantial part of the evaluation work will be associated with the problems of monitoring neutron fluxes inside the reactor. For this purpose, it is necessary to know:

- (a) the thermal and resonance activation cross-sections of elements used as neutron detectors, and the lifetimes and decay schemes of product muclei; the same data are needed for the elements of structural materials and muclear fuel in order to make allowance for the background;
- (b) the activation cross-sections of elements used as threshold detectors, and the lifetimes and decay schemes of the product nuclei.

One of the main functions of the Centre is to supply non-neutron muclear data for controlled fusion research, which is being conducted intensively in the USSR. This activity requires data on the interaction cross-sections of light nuclei for energies of several MeV. Data are also needed on the gamma-ray spectra and lifetimes of nuclei generated as a result of interaction between the fusion reaction products and the elements of structural materials and materials which can be used for tritium breeding.

Data are very important for work connected with the production and application of artificial radioisotopes, for research on activation analysis using charged particles and for medical and biological research.

Apart from data on the structure of nuclei, their radioactive transformations and reaction cross-sections, data are essentially needed on the stopping power of various substances and on the paths of scattering of nuclear radiation energy in different media.

The above list of the principal areas of applied science and technology requiring non-neutron nuclear data cannot, of course, be regarded as final. The current trend of applying methods developed for the purpose of solving nuclear problems to other areas will undoubtedly give rise to new, and perhaps not even purely nuclear, functions.

The practical requirements of non-neutron nuclear data are, on the whole, reflected quite fully in the papers presented by A. Lorenz and A. Calamand at the Consultants' Meeting and the Specialists' Meeting held in April-May 1974, [INDC(NDS)-61] and the requirements of Soviet scientists do not in practice differ from those of other countries.

For the next few years the Centre's activities will be focussed on the following:

- generation and maintenance of a file of evaluated data on the properties of fission-product muclei;
- work on a file of evaluated data on the structure of the nucleus;
- generation and maintenance of a file of experimental data on gamma radiation accompanying radioactive transformations of nuclei;
- compilation activity in the field of the charged-particle and photon beam activation cross-section and the yield of reaction products;
- generation and continuous updating of the bibliographic reference file including abstracts of papers on nuclear structure, radioactive radiations and nuclear reactions.

It is very difficult and practically impossible in the area of chargedparticle-induced nuclear reactions to expand activities greatly on collection, evaluation and dissemination of non-neutron nuclear data without combining the efforts of data centres in different countries. In the absence of a clearly defined system of international co-operation it will not be possible to carry out work of sufficient quality on compilation and evaluation of non-neutron nuclear data and the work of national centres may be made substantially more difficult.

5. THE CENTRE'S ACTIVITIES IN COMPILATION OF DATA ON CHARGED-PARTICLE-INDUCED NUCLEAR REACTIONS

As we have pointed out earlier [1], during the first stage of its activities, the Centre devoted its attention mainly to generating libraries of key-word abstracts. This decision was due to the realization that no work on compilation and evaluation of experimental and theoretical digital material was possible without a good knowledge of the world literature.

The key-word abstracts are based on the format used in the Nuclear Data Project, and in the journals Nuclear Physics and Physical Review C.

Examples of the abstracts can be seen in the publications of the Centre [2] and of the Data Centre of the Leningrad Institute of Nuclear Physics [3]. These were issued in order to acquaint Soviet and foreign scientists with such abstracts; their main purpose was to obtain critical comments from scientists on the form and content of the abstracts.

At the meetings held last year at the IAEA it was recommended that samples of abstracts should be sent to Dr. D. Horen at NDP for analysis and comment. We have not yet seen the results of such analysis, although it is necessary not only for us but also for all those who are parties to this international collaboration.

The abstracts prepared in the USSR do, of course, differ in form from those of NDP. This is due to differences in the peripheral devices of their computers. However, these differences are not substantial. In the case of exchange of magnetic tapes, any code <u>acceptable to all</u> participants in the exchange can be used. Our view is as follows: ASCII codes are sufficient for international exchange of key-word abstracts, while adherence to only BCD or EBCDID codes used in EXFOR will give rise to difficulties.

The possible differences in the content and syntax of abstracts are much more substantial. In Nuclear Data Sheets, abstracts of papers on nuclear reactions containing no data on the structure of the nucleus are published in the form of incomplete sheets, on the basis of which it is difficult to compare the USSR abstracts with those of NDP.

The analysis performed by the Centre has shown that the abstracts on muclear reactions published in Nuclear Physics are sufficiently accurate in syntax and allow a relatively simple programme for selecting the necessary papers. This cannot be said of the abstracts published in Physical Review C. In our opinion, the abstracts from Physical Review are not suitable for direct input into computer storage because of very free handling of the syntax. They need remodelling, and this is what we are doing.

It has already been mentioned above that the published abstracts of Soviet works are samples. We do not intend in future to publish these abstracts, since there are special abstracting journals for such publications; we are writing and shall write abstracts on magnetic tape and provide our customers with information <u>faster</u> than do the abstracting journals.

The Centre's programme of retrieval of the necessary abstracts from the magnetic tape satisfies for the time being the requirements of Soviet scientists who request the Centre to make a literature search.

The Centre receives a large number of requests for preparation of literature references, and the flow of such requests is increasing rapidly. These requests are highly varied and require, as a rule, complicated selection of papers on the basis of several criteria at the same time. An ordinary request for references on charged-particle reactions usually contains several logical combinations of the AND, OR, NO type. For example, a list of references would be requested on a particular channel of nuclear reaction in the target nucleus group in a specified energy region of beam particles. Because of the wide extent and variability of the nature of requests we do not use any internal catalogue for the bibliographic reference file, and each new request requires review of the whole tape. For this reason, we had to develop a programme which conducts the search on several requests simultaneously and gives out the results on different peripheral devices.

Our Centre now meets requests for bibliographic references from Soviet scientists and, occasionally, from scientists in the CMEA countries.

Let us consider the question of the possible methods of exchange of abstracts.

As has already been stated, our Centre is not much troubled by coding problems, since, in our opinion, they are of secondary importance.

We have been asked to consider two types of input of abstracts into the common system:

(1) centralized;

(2) co-ordinated.

Centralized input seems to mean the method in which each participant in the system prepares abstracts in its own field in the form of a text, while one participant transfers them onto the magnetic tape, maintains the master file and provides copies to all others.

Co-ordinated input would mean the method, such as is used in EXFOR, in which each participant maintains its own master file and sends copies thereof to the others.

Considering the relatively successful experience of the neutron data centres, the second method should evidently be preferable. Each abstract will contain a mark, for example in the index, indicating where it was prepared and to whom one should refer in case of difficulties with the text.

Abstracts could be exchanged every three months and uniformity in their preparation achieved within a year by correspondence.

The work on the compilation and exchange of nuclear data on charged-particle reactions can be started only when a particular format of data recording has been adopted. The EXFOR format is not suitable in its present form for recording data relating to charged-particle reactions. However, as has been shown by Professor Münzel's group, with some modification the EXFOR format can be used to record data obtained in nuclear reactions (Memo 4C-3/121). Neutron data centres, too, have no fundamental objections to making such changes (Memo 4C-1/60). Thus, the general problem of format may be deemed to have been settled. There remain only some details to be clarified. It should however be borne in mind that the existing EXFOR should be modified in such a manner as would involve the least possible complication in the work of the neutron centres.

Charged-particle-induced nuclear reactions are so much more varied than neutron reactions that it can hardly be expected that any reaction can be written in the old thesauri, which have to be updated constantly as compilation of nuclear data progresses.

The current trend in the development of research on charged-particle reactions shows that in the next few years the physics of nuclear reactions will become predominantly the physics of heavy-ion reactions. It is therefore necessary right now to try to describe the studies with heavy ions. As an experiment, we are planning to perform this work covering the studies on heavy-ion reactions in progress at the I.V. Kurchatov Institute of Atomic Energy.

At present, it is necessary to clarify the details of modification of EXFOR for application in charged-particle reactions.

- 1. It would be useful to recommend that the neutron data centres should, if possible, transmit to the centres participating in non-neutron data exchange all block schemes of programmes with which they prepare and decode information in EXFOR so as to accelerate and standardize input of the new format for charged particles.
- 2. Charged-particle reactions are observed even now when the gamma quantum precedes the neutron. Perhaps, in fields corresponding to secondary (emerging) particles, particles should be located as the mass increases so that deviation from the established sequence would indicate that this particle emerges first.
- 3. In describing charged-particle reactions it should be compulsory to use the keyword SAMPLE, since charged-particle reactions are accompanied frequently by chemical transformations in the target material and knowledge of the nature of the sample during data evaluation permits independent assessment of the measurement accuracy. This section should include information not only on the sample but also on the specific density of the beam on the target, which is an indication of the intensity of the ohemical transformations.
- 4. The word FACILITY now means only a charged-particle accelerator. It is however important to indicate the type of the chamber where the reaction under study was conducted, and, in particular, whether or not there is an inlet port, whether or not the chamber has differential pumping, and so on. The appropriate notations should be included in the thesaurus.
- 5. Memo 4C-3/121 (6000100100008 and 6000100100009) introduces the key-word MONITOR and refers to two reactions, one of which is unpublished. It is not understood under which SUBENTRY and according to what standard the cross-sections are calculated. It would be useful to include in such cases a column MONIT or STAND in the DATA section, which gives the standard crosssection. Otherwise comparison with other works will be very difficult.
- 6. HALF-LIFE should be included when the data are based substantially on this parameter. This is in fact the same as MONITOR.
- 7. In Memo 4C-1/60, paragraph 5, concern is expressed about what will happen if the number of centres becomes more than nine. The same question may be asked also in the case of the number of papers in the file of any centre. What will happen if the number of papers exceeds 10 000? There is no doubt that this situation is to be expected in the next 5-7 years in the case of charged-particle reactions. At present column 67 gives the number of the centre. For non-neutron centres, column 67 should contain the index C (or any other), while the centre's identification in the form of a twodigit decimal number should appear in columns 65 and 66. In future, index C may be replaced by one more position for the number of papers contained at the centre.

The above suggestions obviously do not require radical remodelling of the existing EXFOR system. The International Nuclear Data Committee should be requested, at its next meeting, to entrust to NDS the work of editing the EXFOR Manual and thesauri so that they could be used to describe data obtained in charged-particle reactions. In this case, it should perhaps be borne in mind that it may soon be the turn of data on radioactivity and structure. Maintenance and improvement of thesauri should be in the same hands in order to prevent any possible confusion. In this matter, NDS should be given full authority.

The distribution of the work on the compilation of nuclear data obtained in charged-particle reactions should, in our opinion, be based on the geographical principle. This is supported by our experience, though not very extensive, in the translation of data into the EXFOR-KFK format, which indicated the need to contact the authors directly. This would be more ample and convenient if the geographical principle is applied.

Our Centre has now received the suggestions of Dr. E.G. Fuller and Professor N. Münzel regarding exchange of experimental data of interest to the appropriate parties. The Co-ordination Group and the Centre have recognized this work as acceptable and mutually beneficial, and it has started. How is this work organized? On the basis of the recommendations of the meeting held in Vienna in April 1974 and with the agreement of Professor Münzel and the approval of the Coordination Group, our Centre convened a meeting which was attended by representatives of the institutes working on similar subjects (Institute of Atomic Energy, Moscow State University, Kharkov Institute of Physics and Technology, Institute of Physics and Power Engineering, etc.). The meeting was informed of the suggestion of Professor Münzel, and it was decided that researchers would submit their data in numerical form in the appropriate format. The specimen format should be provided by the Centre. However, the final version of the format is not yet available, although it is urgently needed for progress of work on the compilation of charged-particle reaction data.

It will thus be evident from the foregoing that, as regards compilation of charged-particle reaction data, the Soviet Union is prepared to participate on a mutually advantageous basis in selective compilations as, for example, in the area of data on yield from a thick target and of reactions leading to the formation of radioisotopes, since at present it is practically impossible to cover everything relating to charged-particle reactions. Any other suggestions received at the Centre will be considered, and if the Co-ordination Group approves, a decision will be taken on developing activities in the field of research concerned.

After clarifying the format, our Centre is prepared to start regular exchange of digital data within a period not exceeding six months. The frequency of the exchange can be settled by discussion. This could be once in three months or once in six months but obviously not once a week.

Apart from the lack of a uniform format, we are held up in this matter by the following circumstance. The Centre's facilities are suitable for reading IBM tapes but we are not sure that we can read any tape, since we have as yet little experience in this matter. It would be of great interest to see samples of magnetic tape recordings at the existing centres and offer them samples of our recordings, i.e. to carry out an experimental exchange in the near future. This could indicate whether or not it is necessary to acquire new equipment. The experimental tape should, of course, be accompanied by the corresponding print-out.

In the near future, the Centre does not propose substantially to develop activities on evaluation of nuclear data obtained from charged-particle reactions. In a number of cases, the Centre either carries out itself, or has other organizations carry out, selective evaluations.

As regards charged-particle reactions, especially the energy dependence of reaction cross-sections, it is necessary to make an essential distinction between two regions: resonance and smooth. Evaluation in the resonance region is very difficult, and here it may be simpler to perform an experiment than try to combine widely differing data. In the case of the smooth dependence, the neutron data evaluation methods which are being developed and which already exist can be quite useful and the experience of the neutron data centres should be taken into account.

> In our opinion, the theoreticians specializing in nuclear reactions should not be forgotten. They can calculate, for example, the dependence of cross-sections on the basis of a model representation, i.e. in essence they perform an evaluation, since this calculation is then compared with experiment. Therefore, our duty here is to provide the most complete experimental material to the theoreticians so that they can choose the best model and then give the necessary evaluation.

REFERENCES

- [1] SOKOLOVSKIJ, L.L., FENIN, Yu.I., CHUKREEV, F.E., O sostoyanii rabot po nenejtronnym yadernym dannym v SSSR (Present status of work on non-muclear data in the USSR). Paper presented at the Meeting of X-centres, IAEA, April-May, 1974.
- [2] ZHUKOV, M.V., MARTENS, L.P., SAPERSTEIN, Eh.E., Sbornik referatov po sovetskim teoreticheskim rabotam (Collection of abstracts of Soviet theoretical papers). Preprint IAE -2403 (1974).
- [3] AVOTINA, M.P., KONDUROV, I.A., NOVIKOV, Yu.N., SERGEENKOV, Yu.V., Annotatsii v klyuchevykh slovakh: yadernye dannye v sovetskikh rabotakh (key-word abstracts: muclear data in Soviet papers). Preprint LIYaF No. 65 (1973).

<u>Report on the Nuclear Structure and</u> Charged Particle Reaction Data Survey

- T. Burrows
- N. Holden
- M. Bhat
- C. Dunford
- S. Pearlstein

August 25, 1975

The purpose of the survey was to determine how existing compilations and evaluations of nuclear structure and charged particle data are generally regarded by the scientific community and to collect constructive suggestions that might be offered. For this purpose it was not deemed necessary or practical to survey more than a reasonably-sized segment of the scientific community. An appropriate list of names was solicited from leaders in both basic and applied scientific activities. Although the majority of those contacted and those responding were engaged in basic research, we believe the survey also adequately reflects the concerns of those engaged in applied research.

SUMMARY OF SURVEY RESULTS

I. Scope and Audience of Survey

In summarizing the results of this questionnaire the following facts should be noted:

- 1. Approximately 410 questionnaires were sent out.
- 135 replies were received. Several replies were the cumulative response of a research group. This number includes copies forwarded by recipients to people not on the original list.
- 3. The replies were broken into the following catagories:

a.	Basic research	86%
Ъ.	Applied research	10%
c.	Evaluation	4%

Thus, the survey is heavily weighted in favor of basic research, both experimental and theoretical. It should be further noted that in basic research it was heavily weighted to structure and charged-particle research.

A copy of the questionnaire may be found in Appendix A.

II. Bibliographic Sources and Needs

_

A. There is a general consensus that a complete and current bibliography

of nuclear structure, decay, and reaction data be maintained.

. .

B. Bibliographic Sources in Current Use

l. Recent References and/or Charged-Particle Reaction Lists	52%
2. Nuclear Science Abstracts	25%
3. Physics Abstracts	5%
4. Others (12)	18%

5. It should be noted that most of those who replied do their own literature scanning to supplement, or in lieu of, the above sources and to maintain their private files. C. Time Cycle of Cumulative Editions of Recent References

1.	Less than or equal to one year	50%
2.	Two years	8%
3.	Three years	8%
4.	Four years	0%
5.	Greater than or equal to five years	2%
6.	No need for cumulative editions	16%
7.	No comment	16%

Thus, there is a strong desire for an annual cumulative edition of Recent References.

D. Adequacy of Coverage of Recent References

With the exception of laboratory reports and theoretical papers, the coverage of Recent References was judged to be adequate.

E. Inclusion of Theoretical Papers in Recent References

	1.	Yes	50%	
	2.	Yes, but separate from experimental	2%	
	3.	Maybe	14%	
	4.	No	17%	
	5.	No comment	16%	
F.	Spec	ific Retrievals from the Current Reference	File	
	Арр	roximately 79% answered this question with	the following	results:

1. Yes 77% 2. No 23%

111. Experimental Data

A. There is a strong desire to have experimental data available with:
1. Yes
2. No
3. No comment
5%

A more detailed analysis may be found in Appendix B.

58 Annex 3 USA

> B. The format for experimental data was almost equally divided between desk-top book (52%) and computer-readable files (48%). Note: of the 82 replies expressing a desire to have experimental data available, only 49 gave a preference in formats.

C. Several general conclusions about the type of experimental data desired could be drawn from the survey. Level and decay data properties were almost universally desired. Coulomb excitation, reaction cross section, excitation function, isobaric analog, and L-transfer data were strongly desired. Many replies also expressed the need for coincidence data, fission product and prompt neutron yields, and polarization data. No definite conclusions could be obtained for data relating to fewnucleon interactions since the survey had been heavily biased toward structure and charged-particle research.

IV. Recommended or Evaluated Data

A. The following compilations were found useful by those who replied:
1. Nuclear Data Sheets
2. Chart of the Nuclides
3. Table of Isotopes
4. Others
5. Not given

It should be noted the question specifically referred to items 1-3 above, and therefore was heavily weighted for these three publications. Also, as has been noted above, survey returns were heavily weighted towards basic research. Finally, many replies noted that the choice of publication was dictated by currency (e.g. Table of Isotopes was out of date so the Nuclear Data Sheets were chosen, or vice versa). B. Evaluation Cycle Time

The suggested evaluation cycle times varied from less than or equal to one year to greater than or equal to five years with a flat distribution. Note also that 39% of the replies had no comments on the cycle time.

1.	Less than or equal to two years	19%
2.	Greater than two and less than five years	15%
3.	Greater than or equal to five years	9%
4.	More frequent than the current publications	13%
5.	No comment	36%
6.	No evaluation or recommended values	1%

C. The general conclusions drawn about the type of evaluated data desired parallel closely the conclusions drawn about the experimental data (see III.C.) with the exception that there is less of a desire for evaluated reaction data. However, there was still a strong desire for evaluated cross sections and some desire expressed for the remaining quantities discussed in III.C. Also, as noted in III.C. no definite conclusions could be drawn about few-nucleon data.

BROOKHAVEN NATIONAL LABORATORY

ASSOCIATED UNIVERSITIES, INC., UPTON, L.I., N.Y. 11973

TELEPHONE: (516) 345-2902, 2903, 2904

Dear Colleague:

Specialized collections of references, experimental data, and summaries of recommended values serve the interests of both the basic and the applied sciences. The Division of Physical Research of the U.S. Energy Research and Development Administration which supports a large part of these activities in the fields of nuclear structure and charged particle reaction data, has requested that a study be made to determine how the interests of the entire community can best be served. In particular, we are studying how the information contained in such publications as Recent References, Chart of the Nuclides, Table of Isotopes, Nuclear Data Sheets, Energy Levels of Light Nuclei, etc. can be made available in a more uniform way on a timely basis.

Essential to the success of this study is an informed view of the requirements of the basic and applied science communities. To aid the study in progress, your help is requested by supplying information to us relating to the attached list of questions. These questions are meant only as a guide for your reply, so you should feel free to respond in whatever form which seems suitable. Wherever possible, please rank your choices in order of their importance to your work. Please reply by August 1, 1975 to

> Dr. S. Pearlstein Building 197 Brookhaven National Laboratory Upton, NY 11973 U.S.A. Telephone: (516) 345-2902

61 Annex 3 USA

Appendix A

Survey Questionnaire

62 Annex 3 USA

Questionnaire on Nuclear Structure and Charged Particle Reaction Data

- A. General
 - 1. Name Phone Phone

2. What are your current fields of interest?

- 3. Names of other scientists or groups who should be contacted.
- 4. Information which can be supplied to the user community is of three types a) Bibliographic Lists, b) Experimental Data, and c) Recommended Values. Which of these are useful in your work?
- 5. What nuclear quantities (and energy range where applicable) should be included in the source files above?

B. Bibliographic List

- 1. Do you use Recent References or the Reaction List published in Nuclear Data Sheets? If so how often?
- 2. Do you use any other bibliographic sources? If so, what are they?

- 3. Would you like cumulative publications of Recent References? How often should they appear?
- 4. In Recent References, is the present coverage of journals, conferences, laboratory reports adequate?
- 5. Should relevant theoretical papers be key-worded and included on a regular basis?
- 6. Is the key-word system useful to you? Can it be improved?

 $-N_{\rm B}$

7. Would specific e.g., half-life or reaction type bibliographic retrievals from the current reference files be useful to you?

C. Experimental Data

- 1. Would you like to see measured nuclear structure and charged particle reaction data extracted, with relevant information, from the published literature and available either as a desk-top book or in a computer readable form on request?
- 2. Which data (see attached list) do you consider as most important for inclusion in such a file and why?

64 Annex 3 USA

- D. <u>Recommended Values</u>
 - 1. Using the presently available collection of recommended values, the Chart of Nuclides, Table of Isotopes and Nuclear Data Sheets as examples, which of these comes closest to meeting your needs? How can these publications be improved to better suit your needs?
 - 2. Which quantities on the enclosed list do you feel are absolutely essential in a set of recommended values? How frequently should these sets of recommended values be revised and why?
- E. Other Comments

LIST OF POSSIBLE QUANTITIES

I. Level Properties*

- Ground State Properties A.
 - 1. Abundances
 - 2. Static moments of nuclear charge distribution
 - 3. Static magnetic moments
 - 4. Nuclidic masses
- General Properties Β.
 - 1. Reduced transition probabilities
 - 2. Deformation parameters
 - 3. Quantum numbers
 - a. J Total angular momentum
 - b. T Parity
 - c. L Orbital angular momentum
 - d. N Principal quantum number
 - e. Λ Projection of particle angular momentum on nuclear symmetry axis

 - f. T Isospin g. T_z z-component of T^{\neq}
 - h. K Rotational band quantum number

Note: I and K are good quantum numbers only in certain regions.

- 4. Half-life
- 5. Gyromagnetic ratio
- 6. Per cent decay of state by various modes of decay or branching ratios
- 7. Configuration of state Model dependent
- 8. Spectroscopic strength factors for one-nucleon stripping and pickup reactions (similar quantities for multi-nucleon reactions)
- 9. Average level spacing per state
- 10. Level density parameters
- 11. Level energy
- 12. Level widths and radiation widths

^{*}Uncertainties to be included where applicable +These are in addition to the general properties listed below fFor the ground state, $T_z = (N-Z)/2$

66 Annex 3 USA

- II. Decay Data
 - A. General⁺
 - 1. Coincidences
 - a. Angular correlations
 - b. Coincidences as a function of time
 - 2. Decay constants
 - 3. Decay energies
 - 4. Polarization results
 - a. Circular
 - b. Longitudinal
 - c. Transverse
 - 5. Separation parameters
 - B. Alpha Decay
 - 1. Hindrance factors
 - C. β^{-} and $(\varepsilon + \beta^{+})$ -decay
 - Degree of forbiddenness
 Fermi-Kurie plots
 - D. $(\varepsilon + \beta^{\dagger})$ -decay 1. Electron-capture to positron ratio
 - E. $(\varepsilon + \beta^{\dagger})$ and Y-decay
 - 1. Auger electron energies and intensities
 - 2. Fluorescence yields
 - 3. Internal pair formation and bremstrahlung intensities
 - F. Y-decay
 - 1. Internal conversion electron intensities and energies,
 - conversion coefficients, and conversion coefficient ratios
 - 2. Multipolarities and mixing ratios
 - Spontaneous Fission G
 - 1. Fission product yield
 - 2. Fission channels, barriers, and number of degrees of freedom
 - 3. Prompt neutron yields

* Uncertainties to be included where applicable

⁺Includes α -, β -, γ -, (ε + β ⁺)-, and proton decay, delayed neutron emission, and spontaneous fission.

- III. Reaction Data*
 - A. Coincidences
 - 1. Angular correlations
 - 2. Coincidences as a function of time
 - 3. Coincidences as a function of angle, magnetic field, and time
 - B. Coulomb Excitation
 - C. Cross sections as a function of energy and/or angle
 - D. Excitation functions
 - E. Fission product yields and prompt neutron yields
 - F. Isobaric analog resonance and state properties
 - G. L-transfers
 - H. Polarization results
 1. Tensor
 2. Vector
 - I. Thermal and epithermal reaction properties
 - J. Thick target yields
 - K. Yields as a function of angle, magnetic field, and temperature
 - IV. Few Nucleon Interactions
 - A. Correlation parameters
 - B. Coupling constants
 - C. Depolarization parameters
 - D. Mixing parameters
 - E. Optical model parameters ($E \ge 1$ GeV)
 - F. Phase shifts (E < 1 GeV)
 - G. Scattering lengths, amplitudes, and ranges

* Uncertainties to be included where applicable.

Appendix B

Availability of Experimental Data Desired

	Nuclear Structure	Reaction	Both	Neither	No Comment
Basic	17 (15%)	14 (12%)	46 (41%)	31 (28%)	4 (4%)
Applied	5 (36%)	1 (7%)	6 (43%)	1 (7%)	1 (7%)
Evaluators	0 (0%)	0 (0%)	3 (50%)	2 (33%)	1 (17%)
Total	22 (17%)	15 (11%)	55 (42%)	34 (26%)	6 (5%)

Report on the Activities of the Japanese Study Group

H. Ohnuma

Tokyo Institute of Technology

History

A study group for "Information Processing in Nuclear Physics" has started in Japan in 1974 as one of the 22 subgroups in the project for "Advanced Information Processing of Large Scale over a Broad Area". This project, headed by Prof. Shimanouchi (Univ. Tokyo), has started its three-year experimental period in 1973 under a special fund from the Japanese Government.

Members

The members of our group are:

Hajime Tanaka (chairman), Department of Physics, Hokkaido Univ.

- Yasuhisa Abe (acting secretary), Research Institute for Fundamental Physics, Kyoto Univ.
- Mitsuo Sano (theoretical nuclear physics), Department of Physics, Osaka Univ.
- Mitsuji Kawai (theoretical nuclear physics), Department of Physics, Tokyo Institute of Technology
- Hidetsugu Ikegami (experimental nuclear physics), Research Center for Nuclear Physics, Osaka Univ.
- Hajime Ohnuma (experimental nuclear physics), Department of Physics, Tokyo Institute of Technology
- Masatomo Togashi (system engineering), Department of Physics, Hokkaido Univ.

Aim of the activity

We have agreed on the following points. As far as bibliographic information and nuclear-structure information are concerned, we should support currently working groups rather than start an entirely new project. What is needed now is a data file for charged-particle70 Annex 4 Japan

> induced reactions. Therefore we should work on charged-particlenuclear-reaction data preferably designing a prototype of a "Nuclear Reaction Data File" (NRDF), which will in the future supplement the "Nuclear Structure Data File" (NSDF) developed at Oak Ridge. In NRDF, experimental data such as angular distributions, polarization, asymmetries, excitation functions, etc., should be stored in digital form. Associated information such as experimental conditions should also be stored in order to make future evaluation possible.

General background

In the discussion it has been pointed out that traditional media of information exchange - such as scientific papers in journals are becoming quite insufficient and unsatisfactory, as a result of the increasing amount of information, rising costs for publication, etc. For example, more and more the emphasis is on discussions in recent publications rather than on experimental procedure and results. This is partly due to the "page limit" policy of many journals, and partly due to the increasing number of "black boxes" in experiments. Our hope is that such a data file as we have in mind would provide us with a new medium of exchanging scientific information.

In this regard we should call attention to the following points in designing a prototype of NRDF.

(1) The system should be as flexible and versatile as possible in order to meet the demands resulting from the progress of nuclear physics and variety of requests.

(2) The system should be able to describe experimental conditions in a clear and compact way. These descriptions should include information on targets, on beam characteristics, and on detectors. The detector information should tell not only the kinds of detectors used, but also their logical structure (e.g., in coincidence, anticoincidence, etc.)

A test system: NRDF-1

In order to obtain a general idea of the workability of NRDF, several published papers were picked up and analyzed, and the information in them was listed. After discussions among ourselves as well as with nuclear physicists outside the group and with system engineers, acceptable input, output, and retrieval forms have been tentatively decided. A test system for a HITAC-8250 computer (64-kB memory with two 15-MB disks) has been developed. This test system is called NRDF-1. NRDF-1 is written in PL-1; it takes a total of about 50-kB memory, can be overlaid, and consists of three major parts, namely:

(1) Input routine

This part is to read in cards, interpret descriptive data, check for syntax errors, pick up items that can be used for retrieval, express input data in the form of internal networks, and store them.

(2) Output routine

This routine is to read in requests from cards or from keyboard, analyze the input command, and make proper responses. It searches for data and prints them out on request.

(3) Maintenance routine

This part is to create a data base, correct data for errors, delete data, etc. It is the most important part of the whole program and protects the data area or data file from error inputs and misoperation of the computer.

NRDF-1 has the following features that EXFOR does not have.

(a) It can handle logical arithmetics.

A + B	A or B
A * B	A and B
A - B	A and B
A/B	A or B etc.

(b) The logical structure can be as deep as one likes. This is because descriptive parts are of the form of internal networks.

(c) Numerals are stored as characters. This enables one to preserve significant figures - e.g., one can tell the difference between 3.0 and 3.00. This also facilitates onversion from one computer to another.

72 Annex 4 Japan

> Because of these features, NRDF-1 can take more subtle and sophisticated descriptions - e.g., of detector systems. We think this is important since the information we are trying to store is <u>not</u> raw data in the strict sense of the word but rather a sort of processed data. In order to make further evaluation possible, it is essential to include information regarding how the raw data had been processed by the authors. We can use comments for such descriptions, but it makes data bulky and clumsy and our data file not much different from papers.

The remaining features are quite similar to those of EXFOR. We think the conversion between NRDF-1 and EXFOR very simple, although conversion from NRDF-1 to EXFOR either loses a considerable portion of the information or requires that it be put in as comments, and the information stored in a converion from EXFOR to NRDF-1 is quite incomplete.

Future plan

It has been decided recently that the special fund will be continued for three more years - that is, from 1976 to 1978. The budget of our group during this period will be about 20,000,000 yen (about \$ 70,000) per year. By the end of 1976, the present computer will have been modified by (1) increasing the core memory to 128 kB, (2) attaching a 200-MB disk, and (3) adding an MT handler.

On the basis of our experience, a revised version of the system to be called NRDF-2 - will be designed and will be working by the end of 1976. Then, we think it possible to start collecting actual data, provided that we restrict ourselves to certain specific types of reaction, such as (d.p) and (p.d) reactions, or all singlenucleon-transfer reactions. A crude estimate of the cost, memory size, running time, etc., for such a system indicates that the project is not impracticable if moderately financed by the Government.

The biggest problems before us are those associated with the input, namely:

- (1) How should numerical data be collected ?
- (2) Who will write down the input sheets ?
- (3) How many punchers will be required to convert them to cards ?

A crude estimate tells us that about 10^6 cards/year = 4 x 10^3 cards/day will have to be punched if all kinds of charged-particleinduced reactions are to be compiled. This number will be reduced considerably/<u>if</u> we select only certain types of reactions. If the reduction factor is assumed to be 10, the required punching rate will be 10^5 cards/year = 400 cards/day. This much can be taken care of by one puncher. The estimate of 10⁵ cards/year implies that approximately 10 000 data sheets have to be written per year. If inputs are derived from published papers or preprints, a single person possessing an adequate knowledge of the system and of nuclear physics may be able to write 10 sheets a day. This means five such persons would need to work full time, and at least one specialist would be needed to supervise them and check the sheets for errors.

An even much greater problem seems to be the collection of data. To start with we will have to either read graphs in papers or send special forms to be filled in by the authors. The latter is far more desirable. The form to be sent to the authors should be so arranged that the punchers could soon learn to read it an punch cards directly from it. Numerical data read from graphs should be marked to this effect. The success of our system relies heavily on the cooperation of other experimental nuclear physicists; and conversely, success of our system will make it much easier to collect data.

Once the system is in operation, we anticipate that its compatibility with most computers will allow it to be sent to several centers in Japan and to forcign centers that may desire it. Data tapes would then be sent to these centers so the information generated by the project will be accessible to most potential users. Publication of the data compilations would be technically feasible, but its practicality would have to be assessed on the basis of a survey of the need and an estimate of the cost.

Concluding remarks

Our experience tells us that no objective compilation is possible. We believe that all the compilations are biased, and involve a greater or less amount of subjective evaluation of one kind or another. Selection of keywords, for instance, is already based on a prejudice. This is the reason why input forms and the descriptive part of the data should be as flexible and versatile as possible. It would be different for an application-oriented compilation, for which methods of measurement are usually established and to some extent standardized. If a compilation has started from purely scientific interest, and its aim is to help other physicists of the same field do research in a more effective way, the system must be prepared to accept entirely new types of data obtained by a new experimental technique. Accordingly, the system has to be of evolving nature, so that it can keep up with the progress of physics.

Annex 5 Barwell Nuclear Physics Division, H.8

AERE Harwell, Oxfordshire OX11 ORA Tel: Abingdon 4141 (STD 0235) Ext 2497 Telegrams: Aten Abingdon Telex 83135

Date 12th June, 1975

Dr. J.J. Schmidt, Head, Nuclear Data Section, IAEA, Kärntner Ring 11, P.O. Box 590, A-1011 Vienna, AUSTRIA.

Dear Dr. Schmidt,

Thank you for your letter dated 30th May concerning the CPND meeting in Vienna during September. I should have been glad to accept your invitation to attend as an observer, but unfortunately the meeting coincides with an international conference on "Applications of Ion Beams to Materials" at Warwick, and of which I am Chairman. Mr. Turner regrets that he will be unable to attend, either, due to the condition of his health and the inadvisability of travelling overseas.

I have meanwhile discussed your letter and the meeting agenda with Dr. Rose. My feeling was that too much attention was being devoted to the mechanism of data compilation and too <u>little</u> to the ultimate user needs. In our case, we are concerned with charged particle cross-section data for use in surface materials analysis and the dissemination of information in a form accessible to materials scientists now using nuclear facilities for this purpose. We tend to put their needs (target species, ion species, energy ranges) ahead of the requirements suggested by considerations of uniformity or completeness of data. Factors such as the choice and preparation of suitable standard targets for intercomparison purposes have so far proved more pressing than the need for further data, although we <u>anticipate that</u> we shall discover a lack of specific data during the course of our compilation. Equally important to disseminate are the techniques of particle discrimination, pulse pile-up rejection and other methods well-known in the nuclear field, together with an awareness of the consequences of ion channelling in crystalline targets.

I hope these remarks will be helpful.

Meanwhile, we shall complete the questionnaire and return it to Mr. Calamand.

Yours sincerely,

An Information System for Physics Data in the Federal Republic of Germany

I. Objectives of the Data Information System

The ever increasing number of publications poses serious problems for scientists and engineers to extract data that are relevant to their work from the primary scientific and technical literature and to assess the accuracy of these data. They may at best do so in their special field of research, but in all other cases they have to rely on critical data compilations. Critical data compilations are defined here as compilations in which the data are not only collected and arranged in a special way but in which they are evaluated by means of definite criteria resulting in some recommended values for the user.

In many fields of physics such data compilations are lacking or do not fulfil the requirements of the users, because they are out of date or they are published in places that are not wellknown. This unsatisfactory situation has been confirmed by an inquiry recently performed by the German Physical Society.

Therefore the Zentralstelle für Atomkernenergie-Dokumentation (ZAED) located at the Karlsruhe Nuclear Research Center has been commissione by the German Federal Ministry for Science and Technology to improve this situation in a substantial way by establishing an information system for physical data. For this purpose data compilations will be provided for a number of subfields of physics which will be updated regularly. In addition a bibliography of world-wide data compilations will be published. ⁹78 Annex 6 Germany

II. Scope of the Data Information System

Data from all fields of physics will be entered into the data information system. The data can be of experimental or theoret cal type and may be represented in the form of tables, curves or parametrized formulae. In special cases an index of bibliographical references will be accepted. The following list gives representative examples of needs for data which were indicated by the inquiry of the German Physical Society. This list is not meant to be exhaustive.

<u>High field superconductors</u> (e.g. transition temperature, critical fields, critical current density, penetration depth, coherence length)

Low temperature properties of materials (e.g. specific heat, thermal conductivity, thermal expansion)

<u>Glasses and amorphous solids</u> (e.g. expansion coefficients, electrical properties, optical properties from the infrared to the ultraviolet range)

Laser materials (e.g. wavelengths of laser transitions, spectroscopic properties of rare earth ions in different host lattices)

Surfaces and thin films (e.g. adsorption properties of gases at surfaces, work functions of metals, sputtering data under ion hombardment)

<u>Properties of semiconductors</u> (e.g. transport properties, band edges, optical constants, exciton energies, photoconductivity, lifetimes of charge carriers)

Thermal and thermodynamic properties of solids (e.g. thermoelectric coefficients, phase diagrams of multi-component systems, thermodynamic properties at high pressures)

<u>Magnetic properties of solids</u> (e.g. magnetization and susceptibility of alloys and of intermetallic compounds, temperature dependence of magnetic properties, especially at phase transitions and at critical points)

79 Annex 6 Germany

Optical properties of solids (e.g. data of nonlinear optical crystals as a function of voltage, temperature and frequency; optical constants of solids and liquids in the infrared range; most important properties of widely used luminescent materials) Hard metals (e.g. high temperature behavior, thermal conductivity, thermal expansion, electrical c. nductivity) Atomic nuclei and elementary particles (e.g. anisotropy coefficients of beta and gamma transitions, nuclei radii, lifetimes of isomeric states, mass yields and fission fragment distributions in nuclear fission, coupling constants and scattering data) Atoms (e.g. lifetimes of excited states, isotope shifts, gfactors, polarizabilities, electron collision cross sections for excitation and ionization, hyperfine structure data) Molecules (e.g. dipole moments, cross sections for excitation and ionization, reaction cross sections, interatomic potentials, electron affinities, dissociation energies)

<u>Macromolecules and polymers</u> (e.g. viscoelastic, thermal, electrical and optical properties, longtime behavior, diffusion constants)

<u>Plasmas</u> (e.g. broadening of spectral lines in plasmas, excitation and ionization cross sections of gases, ion mobilities, transport coefficients)

<u>Physical chemistry</u> (e.g. kinetic parameters for reactions of radicals in the gaseous and liquid phases, equilibrium parameters of multi-component systems, absorption spectra of shortlived radicals)

III.Form of the Data Compilations

The data compilations will be published as individual booklets within a series called "Physikdaten/Physics Data" under the authorship of the compilers. The explanatory text of the compilations will be in German and English. This form of single pamphlets has the advantage of being allways at hand and of easy replacement of older editions by updated revisions. The
compilations will be distributed to research institutes, industrial laboratories, libraries and individual scientists.

Future plans envisage a computer stored data bank in which data compilations will be stored on magnetic tape in a format that allows retrieval of the data by different search criteria.

IV. Organization of the Compilation Activities

The data information system to be established will consist of a number of groups compiling the data, of a central office for the management of the system, and of a scientific advisory board.

- a) The data will be collected and, if necessary, evaluated by groups of specialists working at research institutions. These groups which will be established with the assistance of the German Physical Society, should be actively engaged in the same field in which they compile data. They should he responsible for updating their compilations over a longer period of time.
- b) The central office of the data information system will be located at the ZAED and will provide the following services:
 - 1. Technical support to the compiling groups such as providing references to the relevant primary literature by means of magnetic tape services (e.g. Physics Abstracts (INSPEC), International Nuclear Information System (INIS), Nuclear Science Abstracts (NSA), Physikalische Berichte (PB) and other abstract services, if necessary). Also, if required by the groups, the full texts of the documents will be furnished.
 - 2. To a certain extent, financial support to the compiling groups, covering expenses and a honorarium.
 - Editing, publishing and distribution of the data compilations.
 - Computer processing of the data and preparation of data tapes.

- 5. Coordination of the compiling activities of the different groups, organization and management of the whole data information system.
- c) A scientific advisory board will be set up to point out fields in which data are needed, to assist in the selection of the compiling groups and to rewiew the data compilations.
- V. Bibliography of Existing Data Compilations

In addition to the preparation of new data compilations an index of already existing compilations will be set up. Such an index of data compilations will be published in book form and maintained as a computer stored file that will allow rapid access to data compilations with regard to a specific requirement

VI. International Cooperation

The new data information system is intending to cooperate with other national and international organizations so that finally an international collaboration of the different groups in the field of data documentation may result.

Further details on this data information system can be obtained from: Dr. H. Behrens and Dr. G. Ebel Zentralstelle für Atomkernenergie-Dokumentation (ZAED) Kernforschungszentrum <u>7501 Leopoldshafen/Germany</u>

Telephone Nr. 07247/823800

83 Annex 7 Neutron Exfor

SHORT GUIDE TO EXFOR

EXFOR - a computerized EXchange FORmat (- presents in a convenient compact form experimental numerical data as well as physical information necessary to understand the experiment and interpret the data. <u>Keywords</u> and <u>codes</u> make the information computer intelligible. The structure of EXFOR is briefly described in the following.

Each EXFOR "entry" consists of two or more "subentries". The first subentry of an entry contains information which is common to all the following subentries of that entry. Each subentry may include two types of information: Descriptive text information and numerical data. Each item of descriptive text information is identified by keywords such as TITLE, STANDARD, ISO-QUANT, which may exhibit a code within parenthesis, such as (GELI), (SCIN) for the keyword DETECTOR or (TOF), (COINC) for the keyword METHOD. The meaning of most keywords is self-explanatory. The meaning of most codes is given in the free text following the code. Of particular importance is the keyword <u>"ISO-QUANT"</u>. Under this keyword are coded the "isotope and quantity" or, in other words, the reaction and parameter measured.

EXFOR information is available in two formats:

- the "standard format" primarily designed for the international exchange of data in computer processable form, and
- the "edited format" in which coded information and data tables are edited in an easily legible form.

The EXFOR structure, the standard and edited formats are illustrated in example 1.

There are several categories of numerical data:

- In the DATA TABLE the numerical data of the quantity defined above under ISO-QUANT are given under DATA (or RATIO) together with the columns of independent variables, errors, etc.
- Constant numerical values which are common to the entire data table of a given subentry, are given in the CONSTANT PARA-METERS (also called COMMON in the standard format) section.
- Constant numerical values which are common to all subentries of a given entry, are given in the CONSTANT PARAMETERS (resp. COMMON) section of the first subentry of that entry.

All numerical data are defined by <u>Data-heading</u> keywords (e.g. DATA, EN = incident neutron energy, STAND = standard) and by <u>Data-unit</u> keywords (e.g. EV, MB). The list of Data-heading keywords presently used is given on page 6.

Some data tables may have a more complex structure, for example there may be several ISO-QUANT per subentry; in this case each ISO-QUANT is connected to its pertinent column in the DATA TABLE by means of a "pointer", as illustrated in example ?. More generally a pointer can be used to connect related pieces of information (see example 3).

85 EXAMPLE 1 Annex

-1

#10 = "POINTER". WHICH LINKS RELATED PIECES OF NUMERICAL AND/OR TEXT INFORMATION

POINTERS LINK RELATED PIECES OF NUMERICAL AND/OR TEXT INFORMATION. IN THIS EXAMPLE, A POINTER (E.G. 3) LINKS AN ISO-QUANT WITH ITS CORRESPONDING DATA COLUMN.

PRESENTED IN THE "EDITED" LISTING.

IN THIS EXAMPLE, A POINTER LINKS AN ANGLE AND THE CORRESPONDING DIFFERENTIAL CROSS - SECTION. ALSO NOTE THAT TABLES WITH MORE THAN 6 COLUMNS WHICH ARE TEDIOUS TO DECIPHER IN "STANDARD" FORMAT, ARE CLEARLY

1 * "POINTER". WHICH LINKS RELATED FIECES OF MUMERICAL AND/OR TEXT INFORMATION

"EDITED" LISTING

BIBLIDGRAPHY, EXPERIMENTAL DESCRIPTION, EXPLANATIONS

| 22-TI-0

I SOUDEDI

DIFF.FARTL.NEUTRON-EMISSION CROSS-SECTION

010	-	~	•			302/504500002
ISO-QUANT	(22-11-0	+NEM+DA +PAR.)			3027504500003
STATUS	DATA WER	E OBTAINED &	BY INTEGR	ATING UVER A	I HEV INTERV.	AL 302/504500004
	FROM 2 T	O 11 NEV TH	E DOUBLE I	DIFFERENTIAL	CROSS-SECTIO	N 302750450005
	GIVEN IN	SUBENTRY L	1.			3027504500008
ENDELE		4				3027504500007
COMMON		6	3			3027504500008
ANG	LANG	(Z)ANG	JANG	4ANG	SEN-APRA	3027504500009
ADEG	ADEG	TADEG	ADEG	ADEG	MEA	3027504500010
40.	60.	90.	120.	150.	14.6	3027504500011
ENDCOMMON		3				3027504500012
DATA		12	9		_	3027504500013
E-4 (N	E-MAX	DATA-CH	IDATA-ER	RR DATA-CH	(20ATA-ERR (23027504500014
DATA-CH	3DATA-ERR	JOATA-CH	40A TA-E	RR DATA-CH	SDATA-ERR	53027504500015
MEV	MEV	M8/SR	M8/SR	N8/SR	HO/SR	3027504500016
M8/SR	P3/58	M8/SR	M8/SR	MB/SR	KO/SR	3027504500017
2.	3.	30.88	0.57	24.60	0+25	3027504500018
26.85	0.39	25.19	0.44	18.06	0.69	3027504500019
3.	4.	22.61	0.50	14.99	0.20	3027534500020
14.50 2.	3.24	13.60	0.27	8.92	0.56	3027504500021
4.	5.	13.92	0.30	9.30	0.14	3027504500022
7.94	0.15	6.14	0.13	3.11	0.40	3027504500023
5.	6.	10.17	0.25	7.02	0.11	3027504500024
6.12	0.13	2.79	0.05	2.56	0.28	3027504500025
6.	7.	6.53	0.23	5.73	0+10	3027504500026
4.45	0.12	2.35	0.06	2.76	0.36	3827584500027
7,	đ.	7.47	0.22	5.27	0.09	3027504500028
3.43	0.11	1.94	0.05	1.40	0+14	3027504500029
8.	9.	5- 54	0.17	4.16	0.08	3027504500030
2.50	0.09	1.04	0.05	2.46	0+28	3027504500031
9.	10.	3.98	0.11	3.02	0.00	3027504500032
1.76	0.06	0.47	0.02	1.96	0+21	3027504500033
10.	11.	2.94	0.08	2.10	0.05	3027504500034
0.95	0.04	0.27	0.01	0.42	0.10	3027504500035
ENDDATA		22		ſ		3027504500036
ENDSUBENT		35		1		3027504599999
ENDENTRY		2				3027599999999
				1		

SUBENT

"STANDARD" LISTING

750521

30275045

Anne EXAMPLE

3027504500001

88 Annex 7 Neutron Exfor

LIST OF DATA - HEADING KEYWORDS

KEYWORD	EXPLANATION	KEYWORD	EXPLANATION (cont'd)
	2 + 1 the	(cont'd)	d = d + d + d + d + d + d + d + d + d +
EN	LINCIDENT NEUTRON ENERGY, LOD-SYSTEM	COS-MAX	THIGH LINIT OF COSINF-RANGE OF ANGLE. LAB-SYSTEM
EN- APRX	APPROXIMATE VALUE OF INCIDENT NEUTION ENERGY	COS-CM-MAX	HIGH LIWIT OF COSINE-RANGE OF ANGLE. C-M-SYSTEM
EN-CH	INCIDENT NEUTRON ENGRGY. C-4-SYSTEM	COS-RSL	COSINE OF ANGULAR RECOLUTION
EN-MIN	LOW LIMIT OF INCIDENT NHENERGY PANGES LAR-SYSTEM	COS-ERR	COSINE OF ANGLE-ERHOR
EN-CH-HIN	LOW LIMIT OF INCIDENT N-ENERGY RANGE. C-H-SYSTEM	DATA	HEADING FCH COLUMN GIVING THE QUANTITY SPECIFIED
EN-MAX	HIGH LIPIT OF INCIDENT N-ENERGY RANGE. LAU-SYSTEM		UNDER 'ISC-DUANT'
EN-CH-MAX	RIGH LIMIT OF INCIDENT N-ENERGY PANGE. C-4-SYSTEM	DATA-CH	DATA GIVEN IN THE CENTRE OF MASS SYSTEM
EN-DONNA	DUMMY ENERGY. USED AS THE NUMERICAL FOULVALENT	DATA-APRX	APPROXIMATE VALUE OF DATUM
	OF AN INCIDENT NEUTRON SPECIRUM WHERE NO NUMERICAL	DATA-HIN	LOW LIMIT OF DATUM
6N- 00	ENERGY VALUE IS GIVEN HT THE AUTHOR	0414-500	DATA-ERROR. EVELANATION TO BE CIVEN UNDER FERR-ANALYST
EN-RSL	INCIDENT-REUTION INERGENERSOLUTION	DATANEDDI	ELOST DATA-ELEOD. IE NOR THAN ONE EDDOR-COL IS GIVEN.
	-UNEXANTIAL CANAGE AUSCLUTION	VALA-ERRS	EXOLANATICS UNDER TERRONALIST
FN-FAR	FRENC OF KONCHRONATIC INCIDENT-NEUTRON FUEDCY OF	DATA-FROS	SECOND DATA-ERSOR.IF MOSE THAN ONE ERROR-COL IS GIVEN.
E Can	UNCEDIAINTY OF THE CENTRAL ENERGY IN AN INCIDENT		EXPLANATION UNDER 'ERP-ANALYS'
	NEL TRON~SEECTEUNA	DATA-ERR3	THIRD DATA-EFROR. IF MERE THAN ONE ERHOR-COL IS GIVEN.
EN-ENRI	ENERGY FRECS. IF YORE THAN ONE ERSON IS GIVEN.		EXPLANATION UNDER "ERR-ANALYS"
	EXPLANATION UNDER "ENRLANALYS".	+DATA-ERR	. UNSYMPETRIC DATA-ERFOR. EXPLANATH UNDER 'ERR-ANALTS'
EN-ERR2	SECOND ENERGY ERROR. IF PORE THAN THE ERROR IS GIVEN.	+DATA+ERR	- UNSYMMETRIC DATA-ERROR. EXPLANATH UNDER 'ERR-ANALYS'
	EXPLANATION UNDER PERR-ANALYS	RATID	HEADING FCR COLUMN GIVING THE RATIO SPECIFIED UNDER
+EN-ERR	+ UNSYMMETRIC ENERGY-FEROR		"ISD-QUANT", OR THE QUANTITY/STANDARD RATIO
-EN-LAR	- UNSYMMETRIC ENERGY-ERRCA	RATIO-MIN	LON LIMIT OF FATIO
EN-NRM	NORMALIZATION ENERGY. TO BE USED WHEN A CATA SET IS	RATID-HAX	HIGH LIMIT OF RATIO
	NDRMALIZED TO ONE ENERGY ONLY.	RAT ID-ERR	RATIO-EFFCR
EN-RES	RESONANCE ENERGY	RATIO-ERRI	FIRST RATIC-EFROR. IF NORE THAN ONE RATID-ERROR IS
EN-RES-EPR	ERROR OF RESCNANCE-ENERGY	H	GIVEN. EXPLANATION UNDER PERR-ANALYS
NO-ADLER	PU IN ADLFR-ADLER RESONANCE-ANALYSIS. EQUIVALENT TO	HAT IO-ERRZ	SECOND FATIC-ERROR, IF BORE THAN CHE RATID-ERHOR IS
	RESONANCE ENERGY	II	GIVEN'S EXPLANATION UNDER TERN-ANALTS
с с ,	ENERGY OF CUIGDING PARTICLE, LAN-SYSTEM	TRATIO-ERA	SUNSTARETALC RATIO-ERRORS EXPLANATE UNDER SERVICE ANALTS
61	ENERGY OF COTODING PARTICLE, AS DEFINED IN BIB-SECTION	ATAND	PENDING ECE COLUMN CIVING THE NUMERICAL VALUE ASSUMED
E	CHERGY OF CONGOING PARTICULT AS CERTINED IN BIE-SECTIN		EAD THE SECONDANT EDECISIES UNDER ISTANCARDS
FOCH	ENERGY OF CUTGOING BARTICIE. Com-EVETEN	II STAND-FOR	STANDARD-FEER
E-MIN	INW LINET OF OUTGOING-DAPTICLE SUDANCE, LAD-SYSTEM	STANDI	FIRST STANDARD-VALUE TE KOST THAN ONE IS GIVEN.
E-CH-4IN	LOW LIFT OF CUTGOING-PARTICLE E-RANGE. C-W-SYSTEM		EXPLANATION UNCER ISTANDARD
E-MAX	FIGH LIFIT OF OUTGOING-PARTICLE E-PANGE. LAR-SYSTEM	STAND2	SECOND STANDAFD-VALUE IF MORE THAN ONE IS GIVEN.
E-CH-4AX	HIGH LIVIT OF OUTGOINC-PARTICLE E-MANGE. C-H-SYSTEN		EXPLANATION UNDER ISTANCAPDI
E-RSL	DUTGOING-PARTICLE ENERGY-RESOLUTION	STAND 3	THIRD STANDARD-VALUE IF MORE THAN DNE IS GIVEN.
ETERR	DUTGDING-PARTICLE ENERGY-ERROR	11	EXPLANATION UNDER "STANDARD"
EーミxC	EXCITATION-ENERGY	STAND1-EPR	FRROR OF FIRST STANDARC-VALUE
E-CXC-41N	LON LIMIT OF EXCITATION-ENERGY	STAND2-EPR	SRPOR OF SECOND STANDARD-VALUE
E-EXC-HAX	HIGH LIMIT OF EXCITATION-ENERGY	STAND 3-EFR	ERROR OF THIFD STANDARC-VALUE
E-LVL	LEVEL-ENERGY	TEMP	SAMPLE TEMPERATURE
E-LVL-INI	INITIAL LEVEL OF GAMMA-TEANSITION	TEMP-ERR	ERROR OF SAMFLE TEMPERATURE
	FINAL LEVEL OF GAMMA-TRANSITION	ELSUSNT	Z-NUMBER OF ELEMENTS, FOR FISSICN-PRODUCT FIELDS UNLT
	LEVEL-ENERGY LINIT OF A DISCORTE A SUCH ADDUD	MASS	A-NUMBER OF ISUIDES, FOR FISSION-PRODUCT TIELDS UNLT
E-1 VI-MAY	NICH ENERGY-I THIT DE A DISCRETS (FUE) - COUD		HALF-LIFE OF RESIDUAL ROLLEDS
	IFWEL-NUMPER, TO BE USED ONLY IS DIVISION INFORMATION IS		NALE-LIFE OF NUCLEUS SPECIFIED IN THE DIR-SECTION
	NDT AVAILABLE.	HL3	HALF-LIFE OF NUCLEUS SPECIFICD IN THE BIB-SECTION
Q~VAL-APRX	APPROXIMATE C-VALUE	HL-ERR	FROOR OF MALE-LISE OF RESIDUAL NUCLEUS
Q-VAL	0-VALUE	HL1-ERR	ERROR OF HALF-LIFE OF NUCLEUS SPECIFIED IN BID-SECTION
0-VAL-RSL	Q-VALUE RESCLUTION	HL2-ERR	ERROR OF HALF-LIFE OF NUCLEUS SPECIFIED IN BID-SECTION
Q-VAL-ERR	3-VALUE ERRCF	HL3-ERR	ERROR OF HALF-LIFE OF NUCLEUS SPECIFIED IN BIR-SECTION
Q-VAL-MIN	OWER LIFIT OF Q-VALUE	FLAG	FLAG. MEANING OF FLAGS GIVEN UNDER THIS FEADING TO BE
Q-VAL-MAX	JPPER LIMIT EF Q-VALUE	1 - E	EXPLAINED IN BIB-SECTION UNDER "FLAG"
E-GAIN	GAIN IN NEUTEON ENERGY	NUMBER	COEFFICIENT-NUMBER OF LEGENDRE OR COSINE COEFFICIENTS
S-GAIN-EAR	SRROR OF GAIN IN NEUTPON ENERGY	NUMBER-CM	COEFFICIENT-NUMBER OF LEGENDRE OP COSINE COEFFICIENTS
E-DGD	DEGREDATION IN NEUTRON ENERGY		WHEN THE FIT WAS BEEN DECUCED FROM AN ANGULAR
E-OGO-ERR	SABOR DE CEGREDATION IN NEUTRON ENERGY	[[DISTRIBUTION IN WHICH THE ENERGIES ARE GIVEN IN THE
ANG	ANGLE. LAB-SYSTEN	II	CENTRE OF WASS SYSTEM
ANGI	ANGLE. DEFINITION SPECIFIED IN THE BIB-SECTION	SPIN J	SPIN J OF RESCNANCES. STRENGTH-FUNCTIONS. ETC.
ANCT	ANGLE, DEFINITION SPECIFIED IN THE BID-SECTION	AURENIUR L	ANGULAR POPERTUAL OF RESUMANCES, STRENGTH-FTS, ETC.
ANC-CH	ANGLE, DEFINITION SPECIFIED IN THE BIB-SECTION	PARITY C	PARTICUL RESCHARCE
ANGHIN	TOW LINTE ANGLE DANCE, LAD-EVENEN		LINEAR HOVENTUM OF INCOMING PARTICLES
ANG-CH-MIN	ION ITHIT OF ANGE DANGE. CAUSTATER	HOM-MIN	VINTNUK LINEAR MONENTUN OF INCOMING PARTICIES
ANG-HAX	HIGH LIMIT OF ANGLE RANGE, LAR-EVETEM	HDH-NAX	MAXIMUM LINEAR NOMENTUN OF INCOMING PAPTICLES
ANG-CH-MAX	HIGH LIMIT OF ANGLE RANGE. C-M-SUSTEN	HISC	HEADING FCS & COLUNN WITH SUPPLEMENTARY INFORMATION
ANG-RSL	ANGULAR RESOLUTION	11	FOR SHICH NO DATA-HEADING KEYNOPO HAS BEEN DEFINED.
ANG-ERR	ANGLE-ERRCA	11	EXPLANATION TO BE GIVEN UNDER "HISC-COL" KEYWORD
COS	COSINE OF ANGLE, LAB-SYSTEM	MISCI	FIRST MISCELLANEOUS COLUMN - IF MORE THAN ONE IS GIVEN
COS-CH	COSINE OF ANGLE, C-M-SYSTEM	§	SAME USAGE AS -MISC-(SEE ABOVE)
COSHIN	LOW LIMIT OF COSINE-PANGE OF ANGLE. LAB-SYSTEM	MISC2	SECOND MISCELLANEOUS COLUMN -IF MORE THAN ONE IS GIVEN
COS-CH-MIN	LOW LIMIT OF COSINE-RANGE OF ANGLE. C-M-SYSTEM	11	SANE USAGE AS -WISC-(SEE ABOVE)
	6		

89 Annex 8 KFK Exfor

Memo 4C-3/121

To: Distribution Land From: J. J. Schmidt and H. D. Lemmel first issued: 3 March 1975 at 4C-Meeting full distribution: 20 June 1975

Subject: Non-neutron EXFOR developed at Karlsruhe

Please find attached copy of a letter from F. Kronenberger at Karlsruhe describing some modifications in the EXFOR format adopted at Karlsruhe for its extension to charged-particle induced reaction. Also attached are two sample EXFOR entries and some dictionary extensions. We submit this proposal for serious consideration at the 4C-Meeting.

The essential points are:

1. The iso-quant consists of two parts: the nuclear reaction, and the parameter of this reaction given in the DATA table. The reaction is coded in a very straight-forward way as usually given in the literature, for example:

(79-AU-197 (A,7N)81-TL-194M, parameter given), or:

(39-Y-89 (P,P2N)39-Y-87G+39-Y-87M, parameter given).

The "parameter given" is along the lines of Dict.14 of the classical EXFOR but excluding the reaction code from the first quantity subfield. The code "CRO" was introduced for the integral cross section of the reaction considered. To indicate to the computer programs the revised iso-quant format, the keyword "ISO-QUANT" was replaced by a new keyword "REACTION".

In view of the large number of possible reactions, we regard the proposed split into "reaction" and "parameter given" as absolutely necessary, and we find the proposed format suitable and recommendable. The "parameter given" would require a dictionary close to but much shorter than the classical Dictionary 14. Details are to be worked out. In the "reaction" all particle codes from Dict.13 are permitted as projectile or as outgoing particles and any nuclide codes in the Z-S-A-M form could be included as well. An extension to ions is possible as well, perhaps in the form Z-S-A-3+ or Z-S-A-1- (the use of the same symbol for separator-hyphen and ion-charge-sign is cosmetically not nice but does not lead to ambiguities). Details are to be reviewed.

- 2. Under "PART-DET" not only the particle type actually detected is coded, but also the nuclide emitting this particle. Decay properties are given in free text under "PART-DET". (The half-life entered here is however not computer-readable, and this seems to be a disadvantage.)
- 3. The keyword "RESID-NUC" is cancelled. When the residual nucleus is not stable, its definition may be ambiguous. Instead relevant nuclei are coded under "REACTION" and "PART-DET".

90 Annex 8 KFK Exfor Memo 4C-3/121

3 March 1975

- '4. The "STANDARD" reaction is given in the same format as the reaction measured. To indicate to the computer program the revised format, the keyword "STANDARD" was changed to "MONITOR". (Ferhaps the term MONITOR is used in Charged-Particles physics more generally than in neutron physics?)
- in neutron physics?)
 5. A number of dictionary additions were proposed for method information. Mr. Kronenberger said that he was not sure whether this is really needed in coded form. As long as this is not proven we are not in favor of extending the method dictionaries.

Clearance: J. J. Schmidt

Attachment

Distribution:	S. Pearlstein (NNCSC) L.Lesca (NDCC) V.Manokhin (CJD)	5x 5x 5x
	NDS: P.M. Attree A. Calamand M. Khalil H.D. Lemmel A. Lorenz K. Okamoto J.J.Schmidt file	

Note: This Memo was first issued at the 1975 4C-Meeting. To make sure that it gets the normal distribution it is issued again with only minor corrections of misprints. Some more details on the work at Karlsruhe were sent to C.Dunford (NDS-Memo 290 of 28 May 1975) for his consideration when formulating a final proposal on this matter. Translation of the letter from Mr. F. Kronenberger to J.J. Schmidt of 20 February 75.

Subject: Charged-Particle EXFOR Work at Karlsruhe

Dear Mr. Schmidt,

..... As enclosures I send you the extensions of the dictionaries and copies of the first two entries to our charged-particle data file. In the comments which are contained in the dictionary extensions, our wishes for changes, extensions and modifications are expressed.

Again, the most important changes compared to the EXFOR for neutron data are the following:

- 1. We have introduced the information keywords REACTION and MONITOR. They replace the keywords ISO-QUANT and STANDARD.
- 2. The information keywords PART-DET and FACILITY were modified as far as their information content is concerned. Thus, PART-DET contains/2-S-A(-M) of the product nuclide as well as of the outgoing particles if in the corresponding experiment they were both detected. FACILITY contains the type of the facility as well as its location.

The dictionaries 2, 10, 13, 16, 18, 21, 22, 23, 24 were extended.

We took the liberty to name us the center no. 6. On purpose, we did not choose "5". Please compare the enclosures with what I have written. The entries 1 and 2 I shall send you as test cases in the form of a trans-tape.

With cordial grettings also from Dr. Muenzel,

F. Kronenberger

cc/Alain Joe Koichi Pamela

	.92		umbe identification field
TYPE T	Annex 8 TERNAL FICTICNARY 1	IDCAT = 75020 C	cola 67.80 could not be
	REPNAL DICTIONARY C		
ALIER		UMARGED PASTILLES,	KASLESUME reproduced
AC COMPLEMENT	LTA SURGUANT, CHPURGU	ANT AND NUCHGUART IS NOT I	SED IN THE due to poor
*	CASE OF CHAFGED -	APTICLE INCOURD REACTIONS	THESE quality of the
¥6.	KEY WURDS AFE SEI	LACED BY TREACTION .	original."
40	2) PARI-DET IS OBL	IGAICRY, BECAUSE THE PART	ICLE DETECTED
TC .	IS IN GENERAL NOT	BVIDUS FROM 'REACTION'.	THE DECAY
*	PROPERTIES OF THE	E DETECTED PARTICLES SHOULD	D BE GIVEN.
4 :	B)THE HALF-LIFE OF	THE DETECTED PARTICLE SHOW	JLD BE GIVEN
\$	UNDER PARTEDET!	AND NOT UNDER THALF-LYFE!	D 9
t	4)THE PRODUCT NUCLI	PUSUSHOULD BE MENTIONED UN	DEP
*	- REACTION! AND/OF	PARY-DET! BUT NOT UNDER	*RESID=NUC*s
REACTION	KEYWORD + CODED, 1	INFORMATION IN PARENTHESES	OELIGATORY
	FOR CHARGED PARTI	ICCE/ INDUCED PEACTIONS.	
	UP TO 6 SUBFIELDS	(SF1(SF2,SF3)SF4,SF5,SF6	5)
	SF1 TARGET MUCLIE	DE ZHSHA(HMX) (SEE MISDHQU	ANT •)
	SF2 PRCJECTILE 🖗	(SEE DICT 13	
	SF3 OUTGOING PART	ICLE (SEE DICT 13)	
	SF4 PRODUCT NUCL)	DE ZesA (-MX) (SEE ISO-QU	ANT ()
	SE5 QUANTITY MEAS	URED (SEE DICT 10	
	SE6 NODIELER	(SEÉ DICT 12)	
	SE1.SE2.SE3.SE4 (ND SES OBLIGATORY. A FREE	TEXT
	EXPLANATION HAS T	O BE ADDED. IE CNE DR MORE	THESE
	SUBETELDS ARE BLA	NK	
	SUBEYELD A IS OPT	1 ANA I	
	THE BUIES FOR CON	BINATIONS OF DIFFERENT OU	TGEING
	DARTICLES OR PROF	NICT NHELTOES ARE STATIAR	THE RULES
		COMPLEXITY, IE SES OF SEA O	
	MORE THAN ONE CON	14 A SI ASH IS 15 515 516 516 60	
MONITOR	KEVHIND ON TOATOR	OV GYCCOT LUCK NET DELEVAN	
HOMINUK	TNEORMATION (NO 7	TO E SUBEREDEN AND EREV T	
	SENTO SEA DEACTA	ON USED AS MENTION NOTATIN	
	SFI IU SF4 KEAUII	UN USED AS MENTION NUTATIO	JN AS GIVEN
	IN TREACTION 353		
	SF5 TYPE UP DATA	USED FOR MUNIFORING (SEE 1)1(1,10)
0.000	SF1 TO SF4 ARE UP	LIGATURY, SE5 GPTIUNAL.	
CRU	(CROSS SECTION) (PUSS SECTION FUR THE FORM	ATICN OF THE
	SPECIFIED PRODUC	I NUCLIDE OR THE SPECIFIC	D REACTION-
	TYPE (X,Y).		
I T Y	(THICK - TARGET - YIS	LD) THICK-TARGET-YIELD FC	K THE
-	SPECIFIED PRODUC	T NUCLIDE	
FCR	(FISSICN CROSS SE	CTION)	e e
FY	(FISSION YIELD) 3	INDEPENT, CUMULATIVE AND I	SOBARIC CHAIN
	YIELD SEE MODIF	FIER (DICT 12)	
XR	(X-RAYS)		
COMPLEX	(UNDEFINED OUTGO	NG PARTICLES) IF THE AUTH	DR DOES NOT
	STATE THE KIND 4	ND NUMBER OF THE DUTGDING	PARTICLES
	IN CHARGED PARTI	CLE INDUCED REACTIONS CR	IF AMBIGUITY
	EXISTS IN RESPEC	OT TO THE REACTION TYPES I	NVCLVED .
C OMP	DATA OBTAINED FRO	OM PUBLICATION BY THE COMP.	ILER,
	CHECKED, BUT NOT	APPROVED BY THE AUTHOR	
CURVE	TACULAR DATA COT	VINED FROM A CURVE WITH A I	DATA-POINT
	READER		
HILAC	(HEAVY ION LINEAR	ACCELERATOR)	
ISOCYC	(ISOCHRONOUS-CYCL	DTRON)	
SYNCYC	(SYNCHROCYCLOTRON	 (1) 100 (100) 100 (100) 100 (100) 100 (100) 	
REC	(CROSS SECTIONS C	R YIELDS DETERMINED BY TH	E COLLECTION
11	OF RECOILS)		
DIDI	(RANGE DE RECOTI S	MEASURED WITH THICK-TARG	ET- THICK
	CATCHER-ARR ALIGEM	ENT)	
DIDU	(RANGE DE EFCOTIS	MEASURED WITH THICK-TARG	FT-THINN-

Annex 8

		CATCHER-ARRANGEMENT)
	DUCI	(RANGE OF FECOILS MEASURED WITH THINNHTARGET-THICK-
		CATCHER-ARRANGEMENT)
	DUCU	(RANGE OF RECOILS MEASURED WITH THINN TARGET-THINN-
		CATCHER-AFE ANGEMENT)
	HEJEI	(CULLECTION BY HE-JET)
	CHSI-P	(CHEMICAL SEPARATION)
	ASEP	(SEPARATION EY MASS SEPARATOR)
	SITA	(SINGLE TARGET IERADIATIONS)
	STTA	(STACKED TARGET IRRADIATIONS)
	INTE	(IRRADIATIONS WITH INTERNAL BEAM)
	EXTP	(IRRADIATIONS WITH EXTERNAL BEAM)
	EDEG	(ENERGY-DEGRADATION BY FOILS) ENERGY-DEGRADATION OF THE
		BEAM BEFURE HITTING HE TARGET ARRANGEMENT
	MUNSTP	(SEPARATE MUNITUPFU)L)
	MONMIX	(MIXED MUNIFUR) MUNIFUR AND TARGET CUMBINED AS CHEMICAL
		COMPOUND OK MIXIORE OR MUNITUR REACTION HAS THE SAME
	DATHT	TARGET NUCLIDE AS THE REACTION GIVEN UNDER "REACTION".
	BCIEL	(BEAM COPRENT INTEGRATED) CODEWORD USED ONLY IF VALUES
		GIVEN IN THE DATA SECTION ARE BASED ON THIS
•	O F MUIC	
	GRADU	(SEIGEN MUTLLER COUNTER)
	SIL ACCINENT	STOLE SULTOPOLATE UELECTURY RECENT SUCTOPOLATE UELECTURY
	※しておAUCIA I み	THE NAL ONLY SED FOR SOLID SUMMILLEATION CODMICK,
	LISCIN	
		(ANNIHILATION RADIATION COINCIDENCE COUNTER)
	CAREA	(PENTADEAK 5/2 SA ANALYSIS)
	TNTANG	(INTEGRATION OF ANGULAR DISTRIBUTION)
	ACCMMENT	THE MEANING OF THE CODE LEN' SHOULD BE EXTENDED TO
	*	PENERGY OF INCIDENT PROJECTILE. LAB. SYSTEM'S THIS
	x	EXTENSION SHOULD ALSO APPLY TO THE OTHER CODEWORDS.
	*	WHICH CONTAIN ISN'. LIKE IENGCH!
	MTSC 3	THIRD MISCELLANSOUS COLUMN SIF MORE THAN ONE IS GIVEN
	,	SAME USAGE AS -MISC-(SEE ABOVE)
	MISC4	FOURTH MISCELLANEGUS COLUMN WIF MORE THAN DNE IS GIVEN
		SAME USAGE ASMISC-(SEE AEOVE)
	ENCALTER	

NUMBER	CF	RECORDS	CHANGED =	0	
NUMBER	OF	FECOFDS	DELETED =	0	
NUMBEP	CF	RECORDS	INSFRIED =	95	
NUMBER	C۴	RECORDS	OBSOLETED =	0	
NUMBER	CF	RECORDS	EXTINCTED =	0	

	94
9	nnex 8
DICTION	1 700703 SYSTEM-IDENTIFIERS
ENDDICTION	45
DICTION	2 750209 INFORMATION IDENTIFIER REYWORDS
TITLE	KEYWORD OBLIGATORY EXCEPT WHEN NOT RELEVANIS
	FREE TEXT ONLY.
AUTHUS	KEYWORD + ALL MAMES IN PARENTFESES UBLIGATORY.
INSTITUTE	KEYWURD + CLOUD INFURMATION IN PARENTHESES OBLIGATORY.
	SEE DICTIONARY 3 FUR INSTITUTES.
EXPANNER	KEYWORD OPTILNALS OF REYWORD PRESENT, THEN TWO DIGIT
	YEAR IN PARENTHESES UPLICATORY.
REFERENCE	KEYWURD + CUDED UNFUKMALIUN IM PARENTHESES UBLIGATURY.
	OP NU 6 SUBFLEUS IN CUUES See dictionary a cor decedence-type
	SEE DICTIONARY & FUR REPERENCEMENTE
	SEE DICTIONARY & EOD BEDERTS
÷ +	SEE DICTIONERY 7 FOR COMPEDENCES IND BOCKS
TS DE OLIANT	KEYWORD + CODEN INFORMATION IN DARENTHESES OBLIGATORY.
	ISO-OHANT MAY BE REDIACED BY CMPC-OHANT OR/NEC-OHANT.
	HE TO 5 SHEETELDS IN CODE.
	THE FORDER IS GIVEN IN THE EIPST SUBEIELD IN THE FORM
	$(7\mu S + \Lambda)$ IF IT IC IN GROUND-STATE, RESPECTIVELY
	$(7 - S_{\sim} \Delta_{m} M)$ IF IT IS IN THE FIRST OR
	(Z-S-A-M2) IF IN THE SECOND METASTABLE STATE.
*	(Z-S-A-M) IF IT IS IN A METASTABLE STATE AND UN-
	CERTAIN WHETHER FIRST OR SECOND ETC.
	SHE DICTIONARY & FOR ELEMENT-SYMEOLS
	SEE DICTIONARY 10 FOR PROCESS/PARAMETER
	SEE DICTIONARY 11 FOR FUNCTION
	SEE DICTIONARY 12 FOR MODIFIER
	SEE DICTIONARY 13 FUP PARTICLE
	SEE DICTIONARY 14 FOR QUANTITY
CMPD-QUANT	REPLACES ISC-QUANT WHEN QUANTITY GIVEN REFERS TO A
	CHEMICAL COMPOUND. COCED INFORMATION IN PARENIHESES
	UBLIGATURY, CODING FURMALISM SAME AS UNDER ISU-QUANT,
	BUT A NUMBER FEPLACED BY 3"CHARACTER COMPOUND CODE.
HUC. ON ALT	SEE DICTIOTARY 9 FOR COMPOUNDS DEDIACES ISC. CHART WICH CHARTITY CIVEN DOES NOT DECED
NOC QUANT	TO THE NEUTRON-TADOUT VUCLEUS CODED THEORYATION IN
	PARSNITHESES OR ICATORY. CODINCLEOSE UDDED INFORMATION IN
	SC-QUANT.
*COMMENT 1	ISO-QUANT CMPD-QUANT AND NUC-CUANT IS NOT USED IN THE
* 25	CASE OF CHARGED PARTICLE INDUCED REACTIONS. THESE
*	KEY WORDS APE REPLACED BY 'REACTION'.
* 2	PART-DET' IS OBLIGATORY, BECAUSE THE PARTICLE DETECTED
*	IS IN GENERAL NOT OBVIOUS FROM "REACTION". THE DECAY
*	PROPERTIES OF THE DETECTED PARTICLES SHOULD BE GIVEN.
* 3	THE HALF LIFE OF THE CETECTED PARTICLE SHOULD BE GIVEN
*	UNDER 'PART-CET' AND NOT UNDER 'FALF-LIFE'.
* 4	THE PRODUCT NUCLEUS SHOULD BE MENTIONED UNDER
*	'REACTION' AND/OR 'PART= DET' BUT NOT UNDER 'RESID= NUC'.
REACTION	KEYWORD + CLCED INFORMATION IM PAFENTHESES GBLIGATORY
	TUR CHARGED PARTICLE INDUCED FEACTLENS.
	UP IN 0 SUBFIELUS (SF1(SF2)SF3)SF4,SF0; SE1 TARCET MUCLIDE 7.5.6/ MAX /SFC 1150-004MT1)
	SET LARGET RUGLINE 245°A(4MA) (SEE 1150°QUANT)
	SED GUIGETTUG PRETIGEE (SEE DIGE 107 SEA DEADHAT MHAIIDE 7285-8425MV//SEE (ISASANAMTI)
	SET REGOUCT ROULING ARGERANNAN SEE TROUVEDANT T
	SE6 MODIFIER (SEE DICT 12)

SF1,SF2,SF3,SF4 AND SF5 OBLIGATORYS A FREE TEXT EXPLANATION HAS TO BE ADDED, IF CHE OF MORE OF THESE SUBFIELDS ARE BLANK. SUBFIELD 6 IS OPTIONAL THE FULES FOR COMBINATIONS OF DIFFERENT DUTGOING PARTICLES OF PRODUCT NUCLIDES ARE SIMILAR TO THE RULES APPLICABLE IN 'ISC-QUANT'. IF SF5 OR SF6 CONTAINS MORE THAN ONE CODE A SLASH IS USED FOR SEPARATION KEYWORD CBLIGATORY EXCEPT WHEN NOT RELEVANT. FREE TEXT STANDARD OF CODED INFORMATION IN PARENTHESES PLUS POSSIBLY FREE TEXT, CODING FORMALISM SAME AS UNDER ISC-QUANT. MONYTOP KEYWORD OBLIGATORY EXCEPT WHEN NOT RELEVANT. CODED INFORMATION (UP TO 5 SUBFIELDS) AND FREE TEXT. SET TO SE4 REACTION USED AS MONITOR NOTATION AS GIVEN IN "REACTION" SF1 TO SE4. SE5 TYPE OF DATA USED FOR MONITORING (SEE DICT 10) SF1 TO SF4 ARE OBLIGATORY, SF5 OPTIONAL. *METHOD!, *FACELITY', *DETECTOR', *ANALYSIS'. AT LEAST ONE OF THESE KEYWORDS MUST BE PRESENT. IF A PERTINENT CODE IN THE RELEVANT DICTIONARY EXISTS, THEN KEYWORD AND CODE SHOULD BE GIVEN. KEYWORD OBLIGATORY EXCEPT WHEN HET RELEVANT. METH00 FREE TEXT OR CODED INFORMATION IN PARENTHESES PLUS FREE TEXT. SEE DICTIONARY 21 KEYWORD OBLIGATORY EXCEPT WHEN NOT RELEVANT. FACILITY FREE TEXT OR CODED INFORMATION IN PARENTHESES PLUS FREE TEXT. SEE DICTIONARY 19 KEYWORD DBLIGATORY EXCEPT WHEN NOT RELEVANT. DETECTOR FREE TEXT OR CODED INFORMATION IN PARENTHESES PLUS FREE TEXT. SEE DICTIONARY 22 KEYWORD OBLIGATORY EXCEPT WHEN NOT RELEVANT. ANALYSIS FREE TEXT OR CODED INFORMATION IN PARENTHESES PLUS FREE TEXT. SEE DICTIONARY 23 KEYWORD OPTICNAL, FREE TEXT OR CODED INFORMATION IN N-SOUPCE RARENTHESES PLUS FREE TEXT SEE DICTIONARY 19 INC-SPECT KEYWORD OPTJONAL. FREE TEXT ONLY. SAMPLE FREE TEXT CNLY. KEYWORD OPTIONAL. OBSCLETE, (MAY EXIST IN ENTRIES FROM 1972 OR EARLIER) GEOMETRY PART-DET THE PARTICLE DETECTED MUST BE EVIDENT EITHER FROM 'ISO QUANT' OR FROM 'PART-DET', IF KEYNORD PRESENT, THEN CODED INFORMATION IN PARENTHESES OBLIGATORY. SEE DICTIONARY 13 FREE TEXT CNLY. FREE TEXT CNLY. FREE TEXT CNLY KEYWORD OPTICNAL, EN-SFC KEYWORD OPTIONAL. RESID-NUC KEYWORD OPTIGNAL, CORRECTION KEYWORD OBLIGATORY. FREE TEXT OF HEADING OF RELEVANT EFRHANALYS ERROR-COLUMN IN PARENTHESES PLUS FREE TEXT COMMENT KEYWORD OPTIGNAL. FREE TEXT CNLY HALF-LIFE KEYWORD OPTIONAL TO SKPLAIN HALF-LIVES GIVEN IN COMMON OR CATA. FREE TEXT OF (HL1,Z~S~A~M) WITH OR WITHOUT FREE TEXT. KEYWORD OPTIONAL. MISC-CCL IF KEYWORD PRESENT THEN COLUMN→ HEADING 'MISC', 'MISCI' OR 'MISC2' ETC. IN PARENTHESES IS CELIGATORY. KEYWORD OPTIONAL, . IF KEYWORD PRESENT THEN THE FLAG FLAG NUMBER IN PARENTHESES IS OBLIGATORY.

TABLE-NR KEYWORD OPTIONAL. IF KEYWORD PRESENT THEN THE TABLE-

95 Annex 8

Anne	λ6 τ.β
	NUMBER IN PARENTHESES IS OBLIGATORY.
STATUS	KEYWORD OBLIGATORY EXCEPT WHEN THE SOURCE OF THE DATA
5	IS GIVEN UNDER 'REFERENCE' AND NO OTHER ISTATUS'
	INFORMATION APPLIES. CODE FROM DICI 16 IN PARENTHESES
	PLUS FREE TEXTS FREE TEXT ALLNE IF NU CODE APPLIESS
HISTURY	CIVILO A DATE NU TUG GOOM VVULDO SLUG A ONE SUADAGTED
	ACTION CODE THE DATE IS OBLICATORY. THE ACTION-CODE IS
	ACTION" CODE: THE DATE IS HELICATENT, THE ACTION CODES ARE FOLLOWING
	PATA DECETVEDIAT THE CENTEE'
	C & COMDINED AT THE CONTRE
	Let ENTERED INTO LIBRARY
	T . CONVERTED FROM PREVIOUS COMPILATION
	E - TRANSMITTED TO OTHER CENTRES
	A - IMPORTANT ALTERATIONS
	U 🗝 UNIMPORTANT ALTERATIONS
	D - ENTRY OR SUBENTRY DELETED. THIS MUST BE FOLLOWED BY
	FREE TEXT JUSTIFYING THE CELETICN
ENDDICTICN	134
DICTION	3 740418 INSTITUTES
ENDDICTION	.745
DICILLN	4 700105 TYPE OF REFERENCE
ERODICTION	
	525 740418 JUURNALS
	6 740418
ENEDICTION	462
DICTION	7 740418 BOOKS AND CONFERENCES
ENDLICTION	632
DICTION	8 730426 ELEMENTS
ENDDICTICN	105
DICTION	9 731023 COMPOUNDS
ENDDICTICN	31
DICTION	10 750209 QUANT-FIELD 1 (PROCESSES+PARAMS)
101	! UTAL
FL	
TNI	INFLASTIC SCATTERING
THS	THERMAL SCATTERING
SCT	TOTAL SCATTERING
BAS	BOUND-ATOM SCATTERING
FAS	FREE ATCH SCATTERING
СОН	COHERENT SCATTERING
INC	INCOHERENT SCATTERING
R A C	SCATTERING RADIUS
LRC	(URUSS SECTION) URUSS SECTION FUR THE FURMATION OF THE
	TYPE (Y Y)
TTV	THICK TARGET VIELD) THICK TARGET, VIELD FOR THE
1 • 1	SPECIFIED PRODUCT NUCLIDE
FCR	(FISSICN CROSS SECTION)
FY	(FISSIUN YIELD) INDEPENT, CUMULATIVE AND ISDEARIC CHAIN
	YIELD SEE MODIFIER (DICT 12)
	ン このでしたのであっていたのにはないのでのののないののののないのであったのであるのであるのです。 1/
NON	NONELASTIC
ABS	ABSORPTION
	Coles Tours Director Bannes as Buthly suite stated because states as a suite state of the suite
SANG _	N, CAMMA
ING	INELASTIC GAMMA
GEM	GAMMATEMISSIUN

N2N	N,2N
N3N	N,3N
N4N	N,4M
NEM	NEUTRON-EMISSION
NPR NPP N2P PEM ND NND NNT NNT NNT NN3 NN3 NNA NNA NNA NNA NNA NNA NNA NNA	NEUTKON-PRODUCTION N,P N,NP N,2P PROTON-EMISSION N,D N,ND N,T N,NT N,HE3 N,NHE3 N,NHE3 N,ALPHA N,NALPHA N,NALPHA ALPHA=EMISSION CHARGED-PARTICLES EMISSION
NF	N,FISSION
ALF	ALPHA
ETA	ETA
NU	NU
PCS	PEAK CROSS-SECTION AT RESENANCE
WID	RESONANCE-WICTH
ARE	RESONANCE AREA
STF	STRENGTH-FUNCTION
D	AVEPAGE LEVEL-SPACING
EN	ENERGY (SPECIAL USE FOR EN, FES = RESONANCE ENERGY)
J	SPIN J OF RESONANCES, STRENGTH-FUNCTIONS, ETC.
PTY	PARITY OF RESONANCE
L	ANGULAR MOMENTUM L OF RESONANCES, STRENGTH-FUNCTIONS ETC
G	STATISTICAL-WEIGHT FACTOR
ANU	ADLER-ADLER NU(EQUIVALENT TO FALF TOTAL WIDTH)
AGT	ADLER-ADLER TOTAL SYMMETRY COEFFICIENT
AHT	ADLER-ADLER TOTAL ASYMMETRY COEFFICIENT
AGC	ADLER-ADLER CAPTURE SYMMETRY COEFFICIENT
AHC	ADLER-ADLER CAPTURE ASYMMETRY COEFFICIENT
AGF	ADLER-ADLER FISSION SYMMETRY COEFFICIENT
AHF	ADLER-ADLER FISSION ASYMMETRY COEFFICIENT
LD P TEM SCO SF ENEDICTION DICTION ENEDICTION DICTION DICTION S N P	LEVEL-DENSITY PARAMETER NUCLEAR TEMPERATURE SPIN-CUT-OFF FACTOR SPONTANEOUS FISSION 76 11 730717 QUANT-FIELD 2 (FUNCTION) 22 12 730717 QUANT-FIELD 3 (MODIFIERS) 59 13 750209 PARTICLES (GAMMAS) EXCEPT DECAY GAMMAS (NEUTRONS) (PROTONS) (DEUTERONS)

97 Annex 8

HF3	(HF-3)
Δ	$(\Delta 1 PHAS) H=4$
FF	(FISSION FRAGMENTS)
	ᆕᆕᆒᅋᇏᆁᇤᆕᄪᆇᄜᆘᅚᆋᅸᅝᆁᇻᇣᇣᅕᅊᇏᇗᇗᇔᇔᅋᇑᇏᄪᅊᄮᅝᇧᇔᇎᄠᅆᅋᇎᇆᇉᇑᄄᇉᇣᅶᇔᅋᇥᇏᇏᇏᇥᇥᇎ ᄼᅟᆕᆣᆃᆍᇓᆦᅮᇍᇈᇈᇉᇈᇈᇟᅸᄪᇆᅸᅸ
	ABOVE CODES ARE USED IN THE FOURTH QUANTITY SUBFIELD
	AND UNDER 'PART-DET'.
	THE CODES BELOW ARE USED ONLY UNDER "PARTHDET".
DC	NEGAN CANNACA ÚCER ECO CANNAC EPITTER COM NETACTACIE
UG	TOTCAT GAMMAST USED FOR GAMMAS EPITTED PROMIMETASTADLE
	DECAY (E.G. BETA DECAY)
XR	
AR	(ANNYHILATION RADIATION)
3-	(DECAY BETA-)
B ϕ	(DECAY BETAS) UNSPECIFIED WHETHER B+ OR B-
B+	(DECAY BETA+) POSITRONS
E	(ELECTRONS) OTHER THAN DECAY BETAS
RCL	(RECOIL NUCLEUS)
KSC	(RESIDUAL NUCLEUS)
рИ	(PROMPT_NEUTECNS)
	(DELAYED NEUTRONS) (UNDERINED CUICOINC DARTICLECA IN THE AUTHOR ROLES NOT
CUMPLEX	CONDEFINED LUTGTING PARTICLEST IF THE AUTHOR DUES NUT
	TH CHARCER RARTICLY INCHOURED EXACTICLS OF TE AMBIGUITY
	EXISTS IN RESPECT TO THE REACTION TYPES INVOLVED
NONE	(NG INFORMATION AVAILABLE)
ENDDICTION	31
DICTION	14 740418 QUANTITIES
ENDDICTION	443
DICTION	16 750209 STATUS
PRELM	(PRELIMINARY DATA) DATA LABELLED BY AUTHOR AS PRELIMIRY
a	FREE TEXT= AUTHOR'S INFORMATION ABOUT FINALIZING THE
	DATA, A SO TR DE USER FOR ADATA NOT TO RE OVETER DRIGD
	AUSU ID BE USED FUR TUATA NUL ID BE QUUIED PRIOR
s psnn	CONTA CHDERSEDED) DATA SHDERSEDED BY'ANTADR'S REVISION.
J F 300	AND REVISED DATA ENTERED IN LIEPARY.
	FREE TEXT= CROSS-REFERENCE TO SUPERSEDING CATA TABLE
DEP	(DEPENDENT DATA)
	FREE TEXT= CROSS-REFERENCE TO THE INDEPENDENT DATA
14 <u>1</u>	FROM WHICH DEPENDENT DATA WERE OBTAINED.
	EXAMPLE= GAMMA-WIDTH WHEN CBTAINED BY SUBTPACTION
	FROM INDEPENDENTLY MEASURED TOTAL-WIDTHS
	AND NEUTRON-WIDTHS.
A P K V D	(APPROVED BY AUTHOR) PROCERCIPY WAS APPROVED BY AUTHOR
	AND AUTHER'S CURRECTIONS HAVE BEEN ENTERED. ()
HNOBT	TONEE TONTH GAME AND DATE OF APPROVAL ALL ALL ALL ALL ALL ALL ALL ALL ALL
0,1001	FREE TEXT= EXPLANATION WHY UNCRTAINABLE
SCSRS	(LATA CONVERTED FROM SCISRS-1) STATUS INFORMATION IS
	INCOMPLETE DUE TO AUTOMATIC CONVERSION FROM SCISRS-1
συτρτ	(NORMALIZATION OUT-OF-DATE)
	FREE TEXT= REASON OR CROSS-REFERENCE TO RENORMALIZED
	DATA TABLE
RNORM	(DATA RENORMALIZED) DATA RENORMALIZED BY OTHER THAN
	AUTHOR
	FREE TEXT= EXPLANATION OF RENCRMALIZATION AND CROSS-
	REFERENCE TO AUTHOR'S ORIGINAL DATA.
	NUTER UNIT TO BE UNED FUK NUMPIKIVIAL RENERMALIZAIN

99 Annex 8

BY AN EVALUATOR. COMPTLATION CENTRES SHOULD GENERALLY STORE THE AUTHOR'S ORIGINAL NORMALIZATION. DATA OBTAINED FROM PUBLICATION BY THE COMPILER. C OF P CHECKED, BUT NOT APPROVED BY THE AUTHOR CURVE TAEULAR DATA OBTAINED FROM A CURVE WITH A CATA-POINT READER $\mathcal{G}_{i}(x)$ ENCOICTION 36 750209 FACILITY DICTION 18 CCW (COCKCROFT-WALTON ACCELERATOR) LINAC (ELECTRON LINEAR ACCELERATOR) (INSULATED CORE TRANSFORMER ACCELERATOR) I CTR VDG (VAN DE GRAAFF) VDGT (TANDEM VAN DE GRAAFE) (HEAVY ION LINGAR ACCELERATOR) HILAC CYCFF (CYCLDGRAAFF) CYCLD (CYCLOTRON) (I SOCHRONOUS-CYCLOTRON) ISUCYC (SYNCHRCTROR) SYNCH SYNCYC (SYNCHROCYCLOTRON) (BETATRON) BETAT MICRY (MICROTRON) DYNAM (DYNAMITRON) OSCIP (PILE OSCILLATOR) CHCPF (FAST CHOPPER) CHCPS (SLOW CHOPPER) (VELOCITY SELECTOR) SELVE SPECM (MASS SPECTPOMETER) SPECD (DOUBLE MASS SPECTROMETER) (CRYSTAL SPECTROMETER) S PECC ENDDICTICN 21 DICTION 19 730426 NEUTRON SOURCE 14 ENCLICTION 21 DICTION 21 750209 METHOD COINC (CDINCIDENCE) (PULSE-HEIGHT DISCRIMINATION) PHD DIFFR (DIFFRACTION) **REFL** (TOTAL REFLECTION FROM MIRFORS) (MAGNETIC FLELD ROTATION) MAGER (TIME=OF-FLIGHT) TOF SLODT (SLOWING DOWN-TIME) CACMB (CADMIUM BATH) MANGE (MANGANESE EATH) ACTIV (ACTIVATION) S E AC (REACTIVITY MEASUREMENT) B URN (BURN-UP) ASSOP (ASSOCIATED PARTICLE) PLSED (PULSE DIE-AWAY) REC (CROSS SECTIONS OR YIELDS DETERMINED BY THE COLLECTION OF RECOILS) (RANGE OF FECOILS MEASURED WITH THICK-TARGET-THICK--> DIDI CATCHER-ARP ANGEMENT) (RANGE OF RECOILS MEASURED WITH THICK-TARGET-THINN-DICU CATCHER-ARRANGEMENT) (RANGE OF RECOILS MEASURED WITH THINN-TARGET-THICK-DUDI CATCHER-ARR ANGEMENT) (RANGE OF RECOILS MEASURED WITH THINN-TARGET-THINN-DUCU CATCHER-ARRANGEMENT) HEJET (COLLECTION BY HE-JET) CHSEP (CHEMICAL SEPARATION)

Ann	
45 EP	(SEPARATION BY MASS SEPARATOR)
SITA	(SINGLE TARGET IRRADIATIONS)
STTA	(STACKED TARGET TRRADIATIONS)
INTR	(TRRADIATIONS WITH INTERNAL BRAM)
SX TE	(IRRADIATIONS WITH EXTERNAL BEAM)
FDFG	(ENERGY-DEGRADATION SY EDILS) ENERGY-DEGRADATION OF TH
2020	BEAM BEEDEF HITTING THE TARGET AFEANGEMENT
MONSEP	(SEDARATE MENITIORED) 1
MONNIX	(MIYER MONITOR) MONITIDE AND TARCET COMBINED AS CHENTO
	COMPOUND OR MIXTURE OR MONITOR REACTION HAS THE SAME TARGET NUCLIDE AS THE REACTION GIVEN UNDER "REACTION
BUINI	GIVEN IN THE DATA SECTION ARE BASED ON THIS MEASUREMENT
ENDDICTIC	N 40
DICTION	22 750209 DETECTORS
G E MUC	(GEIGER MUELLER/CCUNTER)
GL ASD	(GLASS DETECTOR)
TRD	(TRACK DETHCTOR) ALL WHICH ARE NOT GLASS
SOLST	(SOLID-STATE DETECTOR)
SID	(SI=SOLID=STATE DETECTOR)
GELT	(GERMANIUM LITHIUM DETECTOR)
THRES	(THRESHOLD DETECTOR)
MU XS	(MOYON-RAF DETECTOR)
HODBI	(HORNYAK BUTTON DETECTOR)
SC TN	(SCINITILIATION DETECTOR)
SC DWARNT	ICTNE CUMER DE LICED EMA SOLTE SCINTILLATION COUNTED
W COLORAL, MA	TYPE ALL CALVER SOLID SCHALLERING COUNTRY
* 1 1 C C T i I	LING NAUF UNLIS A ROUTED SCENTLLATION COUNTERN
	(LIQUID SUIVILLATION COUNTER)
STANK	
MIANN	(MUDERATING TANK DETECTOR)
CSICK	(CESTUM-TODIDE CRYSTAL)
MAICR.	(SCDIUM IODIDE CRYSTAL)
LONGC	(LONG COUNTER)
PRCPC	(PROPORTIONAL COUNTER)
TELES	(COUNTER TELESCOPE)
FISCH	(FISSION CHAMBER)
BPAIR	(ELECTRON PAIR SPECTROMETER) FOR GAMMAS
AR COI	(ANNIHILATION RADIATION COINCIDENCE COUNTER)
ENCOLCTIC	N 23
NGITJIO	23 750209 ANALYSIS
AREA	(AREA ANALYSIS)
GARFA	(PHOTOPEAK = AREA ANALYSIS)
SHAPE	(SHADE ANALYSIS)
6071A	(ART TIMES DISCOCHTINE CONSCRETTION AT ONE ANDLE)
4 F 1 1 M	APPENDED DIFFERENTIAL GRUSSTSECTION AT UNE ANGLET
	(SINGLE LEVEL ANALISIS)
MLA	(MULTILEVEL ANALYSIS)
INTANG	CINTEGRATION OF ANGULAR DISTRIBUTION
ENERICIE	N (
DICTION	24 750209 DATA HEADING KEYNORDS
*COMMENT	THE MEANING OF THE CODE 'EN' SHOULD BE EXTENDED TO
ĸ	'ENERGY OF INCIDENT PROJECTILE, LAB-SYSTEM'. THIS
*	EXTENSION SHOULD ALSO APPLY TO THE OTHER CODEWORDS,
3¢c	WHICH CONTAIN 'EN', LIKE 'EN-CM'.
EN	INCIDENT NEUTRON ENERGY, LAB SYSTEM
EN-CM	INCIDENT NEUTRON ENERGY, C-M-SYSTEM
EN-MIN	LOW LIMIT OF INCIDENT NHENEFGY RANGE, LAB-SYSTEM
	LOW LINKT OF THE DENT NEEDED CALCE COMESSION
EN-CM-MIN	- LOW LINII OF INVIDENT NEENERGY RANGE - COMESTSTEM
EN-CM-MIN EN-MAX	HIGH LIMIT OF INCIDENT N-ENERGY RANGE, LAB-SYSTEM
ENCM-MIN ENMAX ENCM-MAX	HIGH LIMIT OF INCIDENT N-ENERGY RANGE, LAB-SYSTEM HIGH LIMIT OF INCIDENT N-ENERGY RANGE, LAB-SYSTEM HIGH LIMIT OF INCIDENT N-ENERGY RANGE. C-N-SYSTEM

101 Annex 8

EN-DUMMY	DUMMY ENERGY, USED AS THE NUMERICAL EQUIVALENT
	OF AN INCIDENT-NEUTRON SPECTRUM WHERE NO NUMERICAL
	ENERGY VALUE IS GIVEN BY THE AUTHOR
ENMESL	INCIDENT-NEUTRON ENERGY#RESOLUTION
+EN-PSL	+UNSYMMETRIC ENERGY RESOLUTION
-EN-RSL	+ UNSYMMETRIC ENERGY RESOLUTION
EN-=ERR	FREOR OF MONOCHROMATIC INCIDENT NEUTRON ENERGY OR
	UNCERTAINTY OF THE CENTRAL ENERGY IN AN INCIDENT
	NEUTRON-SPECTRUM
EN-FRE1	ENERGY ERROR. TE MORE THAN ONE ERROR IS GIVEN.
	EXPLANATION UNDER SER-AUALYST.
EN-SERE 2	SECOND ENERGY FEROR. LE MORE THAN ONE ERROR IS GIVEN.
	EXPLANATION HINDER PERBANALYS!
+ E N= FER	+ UNSYMMETRIC ENERGY FRROR
FN-SER	- INSYMMETRIC ENERGY FEROR
	MORMALIZATION SUPROY, TO BE USED WHEN A DATA SET IS
- III - IIII - III - IIII - III - II	NORMALIZATION INCLUDIO IN DE OSED WHEN A DATA SET IS
ENDER	DECONANCE ENERGY
SNERESEEPE	SPROR OF RESCNANCESEMERCY
MU-AULER	MU IN ADERTADER RESUVANCETARALISIS, EQUIVALENT TU
-	RESUMANUE ENERGY
5 011	ENERGY OF OUTGUING PARTICLE, LASTSYSTEM
E- CM	ENERGY OF OUTGOING PARTICLE, C-M-SYSTEM
2 - 01 - H IV	LOW LIMIT OF OUTCOINC PARTICLE FORANCE, LABOSYSTEM
E= CM·MIN	LUW LIMIT OF OUTODING PARTICLE ESTANGE, COMESYSTEM
E- MAX	HIGH LIMIT OF OUTGOING-PARTICLE E-RANGE, LAB-SYSTEM
EF CMMMAX	HIGH LIMIN OF OUNGUING PARTICLE ERRANGE, COMOSYSTEM
E-RSL	CUIGUING-PARTICLE ENERGY-RESOLUTION
E= FKK	UUIGUING=PARIICLE ENERGY-ERRUR
Em EXC	EXCLIATION-ENERGY
S- EXC- MIN	LOW LIMIT OF EXCITATION-ENERGY
E-EXC-MAX	HIGH LIMIT OF EXCITATION ENERGY
£~ L VL	LEVEL=ENERGY
E⊶LVL-INI	INITIAL LEVEL OF GAMMA-TRANSITION
?⇒LVL…FIN	FINAL LEVEL OF GAMMA-TRANSITION
E-LVL-EPR	LEVEL-ENERGY ERROR
S⊷LVL∸MĭN	LOW ENERGY-LIMIT OF A DISCRETE LEVEL-GROUP
E-LVL-MAX	HIGH ENERGY-LIMIT OF A DISCRETE LEVEL-GROUP
Q= VAL	Q=VALUE
QVAL-ERR	Q-VALUE ERROR
Q-VAL-MIN	LOWEF LIMIT OF Q=VALUE
Q= VAL MAX	UPPER LIMIT OF Q.VALUS
E- GAIN	GAIN IN NEUTRON ENERGY
E- GAIN-ERR	ERROF OF GAIN IN NEUTRON ENERGY
E- DGD	DEGREDATION IN NEUTRON ENERGY
E-DGD-ERR	ERROF OF DEGREDATION IN NEUTRON ENERGY
ANG	ANGLE, LAB SYSTEM
ANG1	ANGLE, DEFINITION SPECIFIED IN THE BIB-SECTION
ANG2	ANGLE, DEFINITION SPECIFIED IN THE BIB-SECTION
ANG3	ANGLE, DEFINITION SPECIFIED IN THE BIB-SECTION
AN G-CM	ANGLE. C-M-SYSTEM
ANG-MYN	LOW LIMIT OF ANGLE BANGE. LAB-SYSTEM
AN C-CM-MIN	LOW LIMIT OF ANGLE RANGE. C-M-SYSTEM
AN G-MAX	HIGH LINIT OF ANGLE RANGE. LAR-SYSTEM
AN G-CM-MAX	HIGH LIMIT OF ANGLE RANGE. C-N-SYSTEM
ANGARSI	ANGULAR RESOLUTION
ANG-ERE	ANGLEFERROR
103	COSINE DE ANGLE. LARESYSTEM
(0.5.5 (0.5CM	COSTNE OF ANGLE, COMESYSTEM
U - J - J - U - I	NUDINE CE MINULLY UNITOIDIEM
CIDSHMIN	LOW LIMIT OF COSTNEERANCE OF ANGLE LAR-SYSTEM

102 Annex	8
COS-CM-MIN	LOW LIMIT OF COSINE-RANGE OF ANGLE, C-M-SYSTEM
COSTMAX	HIGH LIMIT OF COSINE-PANGE OF ANGLE, LAB-SYSTEM
COS-CM-MAX	HIGH LIMIT OF COSINE-PANGE OF ANGLE, C-M-SYSTEM
CO5-851	COSINE OF ANGULAR RESOLUTION
C OS-EFR	COSINE OF ANGLE-EPROR
DATA	HEADING FOR COLUMN GIVING THE QUANTITY SPECIFIED
	UNDER ISO-QUANT!
DATA-CM	DATA GIVEN IN THE CENTRE OF MASS SYSTEM
Ο ΑΤΑ ΔΡR Χ	APPROXIMATE VALUE OF DATUM
DATA-MIN	LOW LIMIT OF DATUM
DATA-"AX	HIGH LIMIT OF DATUM
E ATA-ER R	DATA-ERROR. EXPLANATION TO BE GIVEN UNDER 'ERR-ANALYS'
DATA ERRI	FIRST DATA ERROR, IF MORE THAN ONE ERROR-COL IS GIVEN.
	EXPLANATION UNDER 'ERR-ANALYS'
DATA-EFR2	SECOND DATA-SERVE, IF MURE THAN UNE ERROR-COL IS GIVEN.
	EXPLANATION UNDER "ERPEANALYS"
+ UPIA-ERF	TUTOR DATA FERDOR TE HORE THAN ONE TODOR OF TO ANALYST
DATA-EER3	THIND DATA-CERSK, IF MUKE THAN UNE ERRURDUL IS GIVEN.
	MARLANALIUN UNUTR TERREANALIST Innonnetric data condre evolanith inder terr anti-ver
TUATA-CRK	THE ADIMOLIST COLUMN CONTROL THE SATIO COLOURS WAR LYST
KALLU	HEADING FUE CULUMN GIVING THE RATIU SPECIFIED UNDER
DATTONT	ISUSUANT OF BATTO
D ATTO-MAN	
9 A 1 7 ()	HIGH LIMCH OF MALLU
	FALLUMERTON EIEST DATYDHREDOD, TE MORE THAN ONE DATIOLEDDOD IS
NALICIECERT	CIVEN. FYDIANATION HUDER FERRUANAIVSI
RATIC-FR22	SECOND RATIGHERROR, IF MORE THAN ONE RATIONERPOR IS
66411C0 11072	GIVEN, EXPLADATION UNDER PERROANALYS!
+RATIO FRE	+UNSYMMETRIC RATIO-FREDR. EXPLANATN UNDER 'FRR-ANALYS'
-RATTO-FRR	-UNSYMMETRIC RATIOSERROR, EXPLANATE UNDER "EER-ANALYS"
STAND	HEADING FOR COLUMN GIVING THE NUMERICAL VALUE ASSUMED
	FOR THE ISO QUANT SPECIFIED UNDER 'STANDARD'
STAND-ERR	STANDARD-ERROR
STAND1	FIRST STANDARD-VALUE IF MORE THAN ONE IS GIVEN.
	EXPLANATION UNDER 'STANCARC'
STAND2	SECOND STANDARD-VALUE IF MORE THAN ONE IS GIVEN.
4-	EXPLANATION UNDER "STANDARD"
STANDI-EFR	ERROR OF FIRST STANCARD-VALUE
STAND2-EFF	ERROR OF SECOND STANDARD-VALUE
TEMP	SAMPLE TEMPERATURE
TEMPERR	ERROR OF SAMPLE TEMPERATURE
ELEMENT	Z=NUMBER OF ELEMENTS, FOR FISSION=PRODUCT YIELDS ONLY
MASS	A NUMBER OF ISOTOPES, FOR FISSION-PRODUCT YIELDS CONLY
HL	HALF-LIFE OF RESIDUAL NUCLEUS
HL1	HALF-LIFE OF NUCLEUS SPECIFIED IN THE BIB-SECTION
HL2 =	HALF-LIFE OF NUCLEUS SPECIFIED IN THE BIB-SECTION
HL3 8	HALF LIFE OF NUCLEUS SPECIFIED IN THE BIB SECTION
HLPSRR	EFRUE OF HALF-LIFE OF RESIDUAL NUCLEUS
	EXAMPLE AND ALL AND AN
ロレム *** 世代氏 ロレター #** 0	- CRANK OF MALFELITE OF NUCLEUS SPECIFICD IN DIBESECTION - CRANK OF MALFELITE OF NUCLEUS SPECIFICD IN DIBESECTION
コレク☆ とべゃ ロレメC	ENNUM OF MALTHLIFE OF NUCLEUS SPECIFIEU IN DIBASECTIUN
FLAG C	CALAGE MEANING OF FLAGS GIVEN UNDER THIS HEADING TO BE
NUMBED	EAFLAINED IN DIGHOUTON UNDER THLADY NUMBER HIGEN TO SERVICE INDICES - C COEEE-NUMPERS
NORDER	NUMBERS USED TO SPECIFY INDICEST SOUGHEFFMNUMBERST
NIIMBER-CM	CORRECT CIENT-NHMRER OF LEGENDER OF COSTNE CORRECTOIENTS
NORDERTUR	WHEN THE ETT HAS REEN DEDUCED FROM AN ANCHUND
	DISTRIBUTION IN WHICH THE ENERGIES ARE GIVEN IN THE SEC
	CENTRE OF MASS SYSTEM

103 /101 Annex 8

		10
SPIN J MOMENTHM I	SPIN J OF RESONANCES, STRENGTH-FUNCTIONS, ETC.	Anne
PARTTY	PARITY OF RESONATION	
STAT-W G	STATISTICAL WEIGHT FACTOR G	
MISC	HEADING FOR A COLUMN WITH SUPPLEMENTARY INFORMATION	
	FOR WHICH NO DATA-HEAGING KEYWOPE HAS BEEN DEFINED.	
MISCI	FIRST MISCELLANEOUS COLUMN ~ IF MORE THAN ONE IS GIVEN	
MI SC2	SECOND MISCELLANEOUS COLUMN - IF MORE THAN ONE IS GIVEN	
MI SG3	THIRD MISCELLANEOUS COLUMN WIF MCRE THAN ONE IS GIVEN	
MISC4	FOURTH MISCELLANGOUS COLUMN -IF MORE THAN ONE IS GIVEN - SAME USAGE AS -MISC-(SEE ABOVE)	
	NOTE= * IN COL.66 IDENTIFIES THOSE KEYNOPDS WHICH MAY BE USED DNLY FOR INDEPENDENT VARIABLES.	
ENDDICTION	148	
DICTION	25 730122 DATA UNIT KEYWORDS	
ENDDICTICN	98	

105 Annex 9 KFK Exfor reply

MEMO 4C-1/60

Date: June 9, 1975

From: C. L. Dunford

Subject: Four-Centres Repsonse to 4C-3/121 concerning the KFK Non-neutron EXFOR.

The following discussion represents a consensus of opinion expressed at the 11th Four-Centres Meeting during the discussion of the KFK proposal for a mon-neutron EXFOR. Most attention will be paid to the ISO-QUANT keyword and its structure. However, other changes to the current EXFOR will be discussed.

It was strongly felt that no changes to the present EXFOR will be made until new proposals are tested and justified. Therefore any non-neutron data coded in EXFOR will be maintained as a separate library. However, it was recognized that a single system is desirable in the long term. Therefore it was felt that it may be necessary to correct old EXFOR entries for any format changes.

1. ISO-QUANT - The KFK proposal is not compatible with the current EXFOR. It was felt that the philosophy of the KFK proposal was an improvement on the present EXFOR system but required some modification.

a). The keyword "REACTION" should be used to replace "ISO-QUANT". ISO-QUANT would disappear after conversion of old EXFOR entries.

b). Structure of the coded information (FLD1, (FLD2, FLD3), FLD4, FLD5, FLD6).

FLD1 - Target nucleus coded as presently in EXFOR

- FLD2 <u>Projectile</u> coded using Dictionary 13. This dictionary must be expanded to include heavier than incident 'alpha particles. (eq. L17, C12, U238 etc.) Note that the atomic number is not included as in FLD1.
- FLD3 <u>Reaction</u> using the reaction definition parts of Dictionary 10. All codes like EL, INL, TØT, ABS, ING etc would be used in this field as single, 3 character codes. Reactions which are characterized by the emission of one or more particles would use the particle codes of Dictionary 13 separated by a delimiter (a slash is recommended). An integer preceeding a particle code would represent multiple emission of that particle.

NNP		(N,	N/P)
N4N	-+	(N,	4N)
PP2N		(P,	P/2N)

106 Annex 9 KFK Exfor reply

FLD4 - <u>Parameters and Functions</u> combines parts of Dictionary 10 with Dictionary 11. Codes included in this field would be ALF, NU, WID etc., from Dictionary 10 and adding CRØ, TTY etc.
 FLD5 - <u>Modifiers</u> same as present EXFOR using Dictionary 12.

FLD6 - Particle same as present EXFOR using Dictionary 13.

c) Our modifications to the KFK proposal are such as to permit heavy ion reactions to be coded, permit multiparticle emission to be handled in a machine readable way and eliminate redundancy (for example the final nucleus is not necessary to code). If required, the final nucleus should be given with the keyword RESID-NUC.

EXAMPLES

(39-Y-89 (P,N) 40-ZR-89, CRØ)	KFK
(39-Y-89, (P,N), CRØ)	PROPOSED
(39-Y-89 (P,P2N) 39-Y-87M, CRØ)	KFK
(39-Y-89 (P,P/2N), CRØ, MS)	PROPOSED
(39-Y-89 (P,P5N) 39-Y-84, CRØ)	KFK
(39-Y-89, (P,P/5N), CRØ)	PROPOSED
(8-Ø-16, (N.EL), WID/RED)	PROPOSED

 PART-DET - KFK proposal is reasonable but we propose that the particle detected appear first and the nucleus follow so that the change from current EXFOR is a simple addition instead of an insertion. It also seems reasonable that the quantity described in the keyword be the first piece of coded information.

EXAMPLES

(40-ZR-89, AR, DG)	comment 1 + 2	KFK
(ÅR,40-ZR-89) (DG,40-ZR-89)	comment 1 comment 2	PROPOSED
(39-Y-87M, DG) (DG,39-Y-87-M)		KFK PROPOSED

- 3. <u>FACILITY</u> Under present EXFOR rules of coding, only in exceptional circumstances would the lab code for a facility be different for the lab code of the institute. We could accept the KFK proposal to add a lab code field under FACILITY, but it should be used only if different from INSTITUTE. Multiple facilities if appropriate must be coded as FACILITY (DYNAM, 1USAANL) (SYNCYC, 1CANMCG)
- 4. <u>STANDARD</u> Only one keyword either STANDARD or MONITOR should be finally adopted. MONITOR is almost unused in neutron physics except in the phrase "flux monitor". I am not familiar with the terminology on these words in other branches of nuclear physics. Eventual use of both will be confusing. We suggest that the keyword STANDARD* be used.

107 /10 J Annex 9 KFK Exfor reply

- 5. Area code We will have to do something about the assignment of area codes. With the eventual demise of the SCISRS translation series 5-8 will be available. But what happens if the number of centers becomes greater than 9?
- 6. MISC The use of multiple MISC columns to code various sums and ratios of cross sections is not a good practice (see 60001003) and is illegal in EXFOR. Each should be coded properly in a separate subentry or in a single subentry using the "multiple ISO-QUANT" concept.

I. Learlelen S. Pearlstein

1h

т т. Distributio

on:	L. Lesca J.J. Schmidt V. Manokhin NNCSC	(5 copies) (5 copies) (5 copies)
	mooo	

Second ver	rsion of the KFK CPND Exfor	109 Annex 10 KFK Exfor rev.
ALTER	CHARGED PARTICLES, KARL SRUHE	00000010
DICT	2	00000020
*COMMENT	1) ISO-QUANT, CMPO-QUANT AND NUC-QUANT ARE NOT USED IN THE	00 00 00 03 0
*	CASE OF CHARGED PARTICLE INDUCED REACTIONS. THESE	00000040
*	KEYWORDS ARE REPLACED BY "REACTION".	00000050
* *	2) PARI-DEL' IS UBLIGATORY, BECAUSE THE PARTICLE DETECTED	00000060
*	DENDEDTIES OF THE DETECTED DADITICIES SHOULD BE SIVEN	00000070
+ *	HNDER IDECAY-DATA!	00000000
*	3) THE HALE-LIFE SHOULD BE GIVEN UNDER 'DECAY-DATA' AND	00600100
*	NOT UNDER "HALF-LIFE".	00000110
*	4) THE PRODUCT NUCLEUS SHOULD BE MENTIONED UNDER	00000120
* 0/	"REACTION" AND/OR "PART-DET" BUT NOT UNDER "RESID-NUC".	00000130
REACTION	KEYWORD + CODED INFORMATION IN PARENTHESES OBLIGATORY	00000140
P	FOR CHARGED PARTICLE INDUCED REACTIONS.	00000150
Æ	UP TO 7 SUBFIELDS (SF1(SF2, SF3)SF4, SF5, SF6, SF7)	00000160
- 40 s	SFI TARGET NUCLIDE Z-S-A(-MX) (SEE 'ISO-QUANT')	00000170
~ ~ ~		00 100000 100
- 3 2	SEA DEGRING PARILLE(S) (SEE LL() 15)	00000190
e 2	SES QUANTITY MEASURED (SEE DIGT 10)	00000200
ŬG	SF6 MODIFIER (SFE DICT 12)	00000220
<u>n</u> 3	SF7 CLASSIFICATION (SEE DICT.12)	00000230
3	SF1, SF2, SF3, SF4, SF5 AND SF7 OBLIGATORY. A FREE TEXT	00000240
20	EXPLANATION HAS TO BE ADDED, IF ONE OR MORE OF THESE	00 00 02 5 0
ě K	SUBFIELDS ARE BLANK.	00000260
4 0	SUBFIELD 6 IS OPTIONAL	00000270
	THE RULES FOR COMBINATIONS OF DIFFERENT OUTGOING	00000280
	PARTICLES UN PRODUCT NUCLIDES ARE SIMILAR TO THE RULES	00000290
S 1	APPLICABLE IN 'ISU-QUANI'. DIFFERENT TYPES OF	00000310
•	E.C. A D 2N. LE SES. SEA OD SE7 CONTAIN NORE THAN	00000310
	CNE CODE A SLASH IS USED FOR SEPARATION.	00000330
ADD-RES	KEYWORD OPTIONAL. FREE TEXT OR CODED INFORMATION IN	00000340
	PARENTHESES PLUS FREE TEXT	00000350
MONITOR	KEYWORD OBLIGATORY EXCEPT WHEN NOT RELEVANT. CODED	00000360
	INFORMATION UP TO 13 SUBFIELDS IN PARENTHESES PLUS	0000 0370
	FREE TEXT.	00000380
	SF1 ACCESSION NUMBER OF MONITOR REACTION IN EXFOR	00000390
	FILE STO TO STE MONITOR OF ACTION ANOTATION AS CINEN	00000400
	TN IDEACTIONI CENTO SEA	00000410
	SEA FIRST AUTHOR OF PUBLICATION. ADDITIONAL AUTHORS	00000420
	ARE NOTED BY +. EXAMPLE. LANGE+.	00000440
	SF7 TO SF11 OR SF12 REFERENCE, NOTATION AS GIVEN IN	00000450
	'REFERENCE'.	00000460
	NEXT SUBFILED (SF12 OR SF13) OPTIONAL INFORMATION	00000470
	ABOUT THE DATA, AS EVALUATED OR RECOMMENDED DATA.	00000480
	(SEE DICT 12)	00000490
PART-DET	THIS KEYWORD MAY CONTAIN (IF NOT OBVIOUS FROM	00000500
	ISU-QUANITA SEVERAL SUBFIELDS, GIVING ELIHER THE	00000510
	NULLUE UDJEKVED AND THE ITRE(J) UT KADIATIUN Netedminen od the dadticie/s) netecter. Te vevungn	000005/20
	PRESENT. THEN CODED INFORMATION IN DADENTHESES	00000550
	OBLIGATORY. SEE DICTIONARY 13.	00000550
DECAY-DAT	TA MEYWORD OPTIONAL. IF KEYWORD PRESENT. THEN CODED	00000560
	INFORMATION IN PARENTHESES OBLIGATORY. THE SUBFIELDS	00000570
	ARE SEPARATED BY COMMAS (SF1,SF2,)	00000580
	SF1 NUCLIDE Z-S-A(-MX) (SEE "ISO-QUANT")	00000590

•

	110 Anner 10			
KFK	Exfor rev.	SE2 HALE-) TEE (- ERROR), EXAMPLE $17.3HR-0.3HR$.		00000600
		DR +17-3HR		00000610
		SF3 TYPE OF RADIATION (SEE DICT. 13)		00000620
		SF4 ENERGY OF RADIATION IN KEV		00000630
	•	SF5 ABUNDANCE OF RADIATION PER DECAY		00000640
		SF SF3, SF4 AND SF5 MAY BE REPEATED AS OFTEN AS		00000650
		NECESSARY		00000660
		FREE TEXT OPTIONAL.		00000670
	REL-REF	KEYWORD OPTIONAL. CODEC INFORMATION UP TO 8 SUBFIELDS		00000680
		IN PARENTHESES PLUS FREE TEXT.		00000690
		IN SF1 THE REASON FOR CITING THE REFERENCE IS GIVEN		00000700
		(SEE DICT. 20). IF THE CODE 'N' IS USED A FREE TEXT IS		00000710
		UBLIGATURY.		00000720
		SEZ FIRST AUTHUR UF PUBLICATION, AUDITIONAL AUTHURS		00000730
		AKE NUTED BY T.		00000740
		THE KEVHODD TOFILDERT DEFEDS TO DURI ICATIONS WHICH		00000750
	*******	ARE RELEVANT TO AN ENTRY OR A SUBENTRY. FOR INSTANCE		00000770
	*	TO THOSE PUBLICATIONS WHICH ARE INCLUDED IN AN		00000780
	*	EVALUATION.		00000790
	DICT 3			00000800
	1USASTB	(STATE UNIVERSITY OF NEW YORK, STONY BROOK, N.Y)		00000810
	1USANAL	(FERMI NATIONAL LAB., BATAVIA, ILLINDIS)		00000820
	2 JAPNI I	(NIIGATA UNIV., NIIGATA)	374	00000830
	DICT 5			00000840
	NC	(NUOVO CIMENTO) NUOVO CIMENTO SER.10 2ITY	296	00000850
		STARTING WITH VOL.1(1955) UNTIL VOL.39 NO.4 (1965)		00000860
	NC/A	(NUOVO CIMENTO A) NUOVO CIMENTO SECTION A, SER. 1C 2ITY	298	00006870
		STARTING WITH VOL.40 NO.1 (1965) UNTIL VOL.70(1970)	299	00000880
	10.40	SER.11 STARTING WITH VUL.1(1971)	•	00000890
	NUB	(NUUVU CIMENIU B) NUUVU CIMENIU SECIIUN B,SER.IU 2114	1	00000900
		STARTING WITH VOL 34 NO. 141903/ UNTIL VUL. 10419707	2	00000910
		UNTI VOL AL (A8) AND ERCH VOL 71 (58)	401	000000320
	PPS/A	(PROC_PHYS_SDC_(IONDON)SECT_A) PROCEEDINGS OF THE 2UK 4	+02	00000940
	11378	PHYSICAL SOCIETY -LONDON - SECTION A		00000950
		EXISTING VOL. 62 JAN. 1949 - VOL. 70 DEC. 1957		00000960
	PRS/A	(PROC.ROY.SOC., LONDON, SER.A) PRUCEEDINGS OF THE 2UK	419	00000970
		ROYAL SOCIETY, LONDON, SERIES A, MATHEMATICAL AND		00000980
		PHYSICAL SCIENCES		00000990
	DICT 6			00001000
	CERN-	(CERN EUROP.ORG.FDR NUCL.RES.) CERN EUROPEAN 2222CER	264	00001010
		ORGANIZATION FOR NUCLEAR RESEARCH		00001020
	DICT 10			00001030
	CRU	(LRUSS SECTION) CRUSS SECTION FOR THE FORMATION OF THE		00001040
		TWDE / V VI		00001050
	ττν	THICK-TARCET-VIELDN THICK-TARCET-VIELD ERR THE		00001030
	1 1 1	SPECIFIED PRODUCT NUCLIDE		00001080
	ECR	(EISSION CROSS SECTION)		00001090
	FY	(FISSION VIELD) INDEPENDENT, CUMULATIVE AND TOTAL CHAIN		00001100
	~	YIELD SEE MODIFIER (DICT 12)		00001110
	PY	(PRODUCT YIELD) IN CASE OF CHARGED PARTICLE REACTIONS		00001120
		THIS CODEWORD IS USED WHENEVER CRO, TTY, FCR OR FY		00001130
		CANNOT BE APPLIED, E.G. AVERAGE CROSS SECTION FOR A		00001140
		LIMITED ENERGY RANGE. EXPLANATORY FREE TEXT IS		00001150
		OBLIGATORY.		00001160
	DICT 12			00001170
	BIN	BI NAKY	46	00001180

			lll Annex 10
IND	INDEPENDENT YIELD OF THE PRODUCT NUCLIDE VIA DIRECT FORMATION ONLY	56	00001190
CUM	VIA DIRECT EORMATION AND RADIOACTIVE DECAY		00001210
*COMMENT	THE MODIFIER IND AND CUM ARE USED FOR ALL KINDS OF		00001230
*	NUCLEAR REACTIONS.	_	00001240
*COMMENT	CODEWORDS FGR CLASSIFICATION	60	00001250
	CALCULATIONS BASED ON THEORY		00001260
EVAL	EVALUATED DATA		00001280
RECOM	RECOMMENDED DA TA		00001290
	13 (Y-DANS)	17	00001300
COMPLEX	(UNDEFINED OUTGOING PARTICLES) IF THE AUTHOR DOES NOT	26	00001320
	STATE THE KIND AND NUMBER OF THE OUTGOING PARTICLES		00001330
	IN CHARGED PARTICLE INDUCED REACTIONS OR IF AMBIGUITY		00001340
50	EXISTS IN RESPECT TO THE REACTION TYPES INVOLVED		00001350
SF	(SPONTANEOUS FISSION)		00001370
DICT	16		00001380
COMP	DATA OBTAINED FROM PUBLICATION BY THE COMPILER,	33	00001390
	CHECKED, BUT NOT APPROVED BY THE AUTHOR		00001400
CURVE	READER		00001410
CPX-CURVE	DATA OBTAINED FROM A CURVE WITH A DATA-POINT READER	37	00001430
	BY K.F.MCGOWAN ET AL., PUBLISHED IN		00001440
	GRNL-CPX-1 (1964) FOR PRODUCTION OF MN, FE, CO.		00001450
	UKNL-CPX-2 (1964) FUK PKUDUCTION OF NICO.		00001460
	NUCL.DATA,A2 (1966) FCR PRODUCTION OF C.		00001480
	NUCL.DATA,A3 (1967) FOR PRODUCTION OF N,O.		00001490
DICT 1	.8		00C015C0
HILAC	(HEAVY IUN LINEAR ACCELERAIUR)	6 g	00001510
SYNCYC	(SYNCHROCYCLOTRON)	9	00001530
DICT	20 ADDITIONAL RESULTS / RELATED REFERENCES	-	00001540
RANGE	(RANGE OF RECOILS MEASURED)		00001550
DECAY	(DECAY PROPERTIES OF THE PRODUCT NUCLIDE)		00001560
ANGO	(ANGULAR DISTRIBUTION)		00001580
			00001590
E	REFERENCE USED IN THE EVALUATION		00001600
C	CRITICAL REMARKS		00001610
	NUTE: SEE NEXT FREE LEXT		00001620
REC	(CROSS SECTIONS OR YIELDS DETERMINED BY THE COLLECTION	15	00001640
	OF RECOILS)		00001650
HEJET	(COLLECTION BY HE-JET)		00001660
	(SEPARATION BY MASS SEPARATOR)		00001670
SITA	(SINGLE TARGET IRRADIATIONS)		00001690
STTA	(STACKED TARGET IRRADIATIONS)		00001700
INTB	(IRRADIATIONS WITH INTERNAL BEAM)		00001710
EXIB	IIRRADIATIONS WITH EXTERNAL BEAMJ (ENERGY-DEGRADATION BY EDITS) ENERGY-DEGRADATION OF THE		00001720
	BEAM BEFORE HITTING THE TARGET ARRANGEMENT		00001740
MONSEP	(SEPARATE MONITORFOIL)		00001750
MONMIX	(MIXED MONITOR) MONITOR AND TARGET COMBINED AS CHEMICAL		00001760
	COMPOUND OR MIXIURE OR MONITOR REACTION HAS THE SAME		00001770

112		
Annex 10		
KFK EXFOR FOV TARGET NUCLIDE AS THE REACTION GIVEN UNDER "REACTION".		00001780
BCINT (BEAM CURRENT INTEGRATED) CODEWORD USED ONLY IE VALUES		00001790
GIVEN IN THE DATA SECTION ARE BASED ON THIS		00001800
MEASUREMENT		00001810
DICT 22		00001820
GEMUC (GEIGER MUELLER COUNTER)	ĩ	00001830
SID (SI-SOLID-STATE DETECTOR)	4	00001840
LI SCIN (LIQUID SCINILLATION COUNTER)	-	00001850
ARCOI (ANNI HILATION RADIATION COINCIDENCE COUNTER)		00001860
IOCH (IONISATION CHAMBER) FOR ALPHA-MEASUREMENT		00001870
COIN (COINCIDENCE COUNTER ARRANGEMENT)		00001880
DICT 23		00001890
GAREA {PHOTOPEAK-AREA ANALYSIS}	2	00001900
INTANG (INTEGRATION OF ANGULAR DISTRIBUTION)	6	00001910
DICT 24		00001920
*COMMENT THE MEANING OF THE CODE "EN" SHOULD BE EXTENDED TO	1	00001930
* PENERGY OF INCIDENT PROJECTILE, LAB-SYSTEM'. THIS		00001940
* EXTENSION SHOULD ALSO APPLY TO THE OTHER CODEWORDS,		00001950
* WHICH CONTAIN "EN", LIKE "EN-CM".		00001960
MISC3 THIRD MISCELLANEOUS COLUMN -IF MORE THAN ONE IS GIVEN	138	00001970
SAME USAGE AS -MISC-(SEE ABOVE)		00001980
MISC4 FOURTH MISCELLANEOUS COLUMN -IF MORE THAN ONE IS GIVEN		00001990
SAME USAGE AS -MISC-(SEE ABOVE)		00002000
DATA HEADING FOR COLUMN GIVING THE QUANTITY SPECIFIED		0000 20 10
UNDER 'ISO-CUANT' OR 'REACTION'		00002020
RATIO HEADING FOR COLUMN GIVING THE RATIO SPECIFIED UNDER		00002030
ISD-QUANT OR "REACTION", OR THE QUANTITY/STANDARD		00002040
SUM HEADING FOR COLUMN GIVING THE SUM SPECIFIED UNDER	102	00002050
*REACTION *		00002060
SUM-ERR SUM-ERRGR. EXPLANATION UNDER PERR-ANALYS		00002070
+SUM-ERR +UNSYMMETRIC SUM-ERROR. EXPLANATION UNDER 'ERR-ANALYS'		00002080
-SUM-ERR -UNSYMMETRIC SUM-ERROR. EXPLANATION UNDER "ERR-ANALYS"		00002090
ENDDICTION		00002100
EN DAL T ER		00002110

·						113 Anner 10
ENTRY	60002	75090	4 SA	MPLE	K NTOV	6000200000001
SUBENT	60002001	75090	4		GNICI	6000200100001
818	12	1	.6			6000200100002
TITLE	MEA SURE MENT	AND EQUIL	IBRIUM STATI	STICAL-M	ODEL	6000200100003
	CALCULATION	OF EXCITA	TION FUNCTIO	NS OF TH	E AU-197(A,	XN) 6000200100004
	REACTIONS IN	N INE ENER	GY KANGE FRU	M IO IU	IUS MEV	6000200100005
	(H.E.NUKZ) (E.W.JA SPEK	, KAPISCHER,	Fenekne	21	6000200100008
REFERENCE	(J.NP/A.168)	129.71)	LARISDU			6000200100008
METHOD	(STTA, EXTB)	12 / 11/	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		CKF0	6000200100009
FACILITY	(I SOCYC, 2GE	RKFK)	SECOM	vers	ION	6000200100010
DETECTOR	(GELI)		-	-		6000200100011
SAMPLE	(79-AU-197)		_			6000200100012
ERR-ANALYS	THE ERRORS	STIMATED	FCR THE CROS	S SECTIO	NS ARE LESS	6000200100013
	THAN 10 PER	CENT AND	THOSE FOR TH	E ENERGY	AKE LESS	5000200100014
ANAL VETC	IHAN I MEV					6000200100015
		1				6000200100017
HISTORY	(750127C) MZ	•				6000200100018
ENDBIB	16		0			6000200100019
NOC OMMON						6000200100020
ENDSUBENT	19		0			6000200199999
SUBENT	60002002	75090)4			3336000200200001
BIB	3		3	1		6000200200002
REACTION	(79-AU-197)	A, N) 81-1L- DC)	200, CKU, 1E XP	/ INCOJ		6000200200003
DECAV-DATA	181 - 11 - 200	26.1H8.DG.	368 . 0. 94)			600020020000
ENDRIB	3	200 Ink 900 1	0			6000200200006
NOCOMMON	-		•			6000200200007
DATA	2	1	0			6000200200008
EN	DATA					6000200200009
MEV	MB					6000200200010
16.3	1.3					60002002000H1
18.6	(•9					6000200200012
20.0	20.3					600020020013
25.9	18-3					6000200200015
28.5	10.8					6000200200016
33.6	7.3					6000200200017
36 •7	5.4					6000200200018
39.6	4.5					6000200200019
42.5	3.3					6000200200020
	12		0		7	6000200200021
SUBENT	60002003	75090	0			3336000200200300001
BIB	3	1903	3			6000200300002
REACTION	(79-AU-1970	A,2N) 81-TL	-199,CR0,,EX	P/THEO)		6000200300003
PART-DET	(81-TL-199,	DGI				6000200300004
DECAY-DATA	181-TL-199,	7.5HR,DG,2	208.:0.119)			600020030000 5
ENDB 18	3		0			6000200300006
NOCOMMON		-	-			6000200300007
DATA	2	1	.5			6000200300008
						6000200300009
18.6	11.					6000200300011
20_8	85-					6000200300012
21.9	152.					6000200300013
22.9	200.					6000200300014
24.8	390.					6000200300015

•

114 Annex 10				
25 0	304			(0.002.002.00.01.(
22.7	540			6000200300016
20.1	240+			6000200300017
20.5	004.			6000200300018
29.5	05U.			6000200300019
2407	420.			6000200300020
36.1	203.			6000200300021
39.1	107.			6000200300022
444	11.			6000200300023
4/.4	20.			6000200300024
	3 (•)	7		6000200300025
	1	(5	8	6000200300026
SUDENT	40,002,00	2 4 7E000	0	6000200399999
	0000200	4 (2090) 2	4 /	3336000200400001
DEACTION	1170-11-10	2 7/8 2N191-T	0 1_100_4 (PD _ EVD/THED)+	6000200400002
		/ (A / D N / O I - T)	100 C CDC CYD/TUCC))	6000200400003
PAPT-DET	(1)-T1-109	-M DC1	-190-0 (CRU;) EAP/ (HEU))	6000200400004
FARI-DEI	191-11-198			
	191-11-190	-4100) -411040000	597 0 402)	6000200400006
DECAI -DALA	(01 - 11 - 100)	-M, I +9NK, UG	474 0 00 V	6000200400007
ENDETA	101-11-190-	-0,92.50K,900 4	1010•10•09}	6000200400008
		D	0	6000200400009
DATA	,	っ	2	6000200400010
	DATA	2	0	6000200400011
	MO			6000200400012
205	121			6000200400015
23.0	544			6000200400014
36.1	918.			6000200400015
30 1	1071			6000200400018
42	870-			600020040001 P
47.4	410.			6000200400010
52.4	231.			6000200400019
61.5	130.			6000200400021
ENDDATA	10	0		6000200400021
ENDSUBENT	2	1	n	6000200499999
SUBENT	6000200	5 75090	4	3336000200503001
BIB		3	3	6000200500002
REACTION	(79-AU-197	(A.P 3N)80-	HG-197-M.CRO. EXP/THEC)	6000200500003
PART-DET	(80-HG-197.	-M.DG)		6000200500004
DECAY-DATA	(80-HG-197-	-M.23.8HR.D	G.1340.419)	6000200500005
ENDBIB		3	0	60,002,005,00,006
NOCOMMON			-	6000200500007
DATA		2 .	8	6000200500008
EN	DATA		-	6000200500009
MEV	MB	•		6000200500010
39.1	1.6			6000200500011
42.	3.2			6000200500012
44.8	6. 7			6000200500013
49.9	23.1			6000200500014
59.3	58.9			6000200500015
67.8	66.2			6000200500016
77.4	63.1			6000200500017
86.2	52.6			6000200500018
ENDDAT A	10	0		6000200500019
END SUB EN T	1	8	0	6000200599999
SUBENT	6000200	6 75090	4	3336000200600001
BIB		з·	3	6000200600002
REACTION	(79-AU-197	(A,4N)81-TL	-197,CRO,,EXP/THEO)	6000200600003
PART-DET	(81-TL-197	,DG)		6000200600004

		115
		Annex 10
DECAY-DATA	(81-TL-197,2.8HR, DG, 152.,0.11, DG, 308.,0.054)	6000200600005
ENDBIB	3 0	6000200600006
NOCOMMON		6000200600007
DATA	2 13	6000200600008
EN	DATA	6000200600009
MEV	MB	6000200600010
40.3	199.	6000200600011
43.	632 •	6000200600012
45.7	1106.	6000200600013
50 . 7	1065.	6000200600014
53.	796.	6000200600015
55.2	581.	6000200600016
57.6	392 •	6000200600017
59.8	275.	6000200600018
62.	197.	6000200600019
64.	157.	6000200600020
66.	135.	6000200600021
68.	122.	6000200600C22
70.	114.	6000200600023
ENDDATA	15	6000200600024
ENDSUBENT	23 0	6000200699999
SUBENT	60002007 750904	3336000200700001
BIB	3 6	6000200700002
REACTION	({79-AU-197(A,5N)81-TL-196-M,CRD,,EXP/THEC)+	6000200700003
	(79-AU-197(A, 5N)81-TL-196-G,CRU,,EXP/THEU))	6000200700004
PARIZDET	(81-TL-196-M,DG)	6000200700005
	(81-TL-196-G,DG)	6000200700006
DECAY-DATA	(81-11-196-M, 1.4HR, DG, 695., 0.905)	6000200700007
5.000 T c	(81-1L-196-6,1.8HR,DG,611.,0.164)	6000200700008
ENDRIB	6 0	6000200700009
NUCUMMUN	2 12	6000200700010
		6000200700011
		6000200700012
AC 7	50	6000200700016
50 7	261.	6000200700015
52	540	6000200700016
55.2	852	6000200700017
57-6	1076-	6000200700018
59.8	1137.	6000200700019
62.	981.	6000200700020
64.	862	6000200700021
66.	694-	6000200700022
68.	536.	6000200700023
70.	442	6000200700024
79.3	226.	6000200700625
86.1	161.	6000200700026
ENDDATA	15	6000200700027
ENDSUBENT	26 0	6000200799999
SUBENT	60002008 750904	3336000200800001
BIB	4 7	6000200800002
REACT ION	(79-AU-197(A, 6N)81-TL-195,CRO,,EXP/THED)	6000200800003
PART-DET	(81-TL-195,DG)	6000200800004
DECAY-DATA	(81-TL-195, 1. 2HR, DG, 562., 0. 083)	6000200800005
COMMENT	THE GAMMA-ABUNDANCE IS AN ESTIMATED VALUE ONLY. THE	6000200800006
	ERRORS OF THE CROSS SECTIONS ARE THEREFORE PRESUMAE	BLY 6000200800007
	HIGHER THAN STATED IN ERR-ANALYS. (COMMENT BY THE	6000200800008
	COMPILER)	6000200800009
ENDB I B	7 0	6000200800010

116 Annex 10				
NOCOMMON				6000200800011
DATA		2	10	6000200800012
EN	DATA	-		6000200800013
MEV	MB		,	6000200800014
59.8	61.			6000200800015
62.	266.			6000200800016
64.	560.			6000200800017
66.	672.			6000200800018
68.	850.			6000200800019
70.	943.			6000200800020
73.7	828.			6000200800021
79.3	608.			6000200800022
82.7	500.			6000200800023
86.1	374.			6000200800024
EN DDA TA		12	_	6000200800025
ENDSUBENT		24		6000200899999
SUBEN F	600020	10.2	750904	3336000200900001
BIB	170 411 10	5		6000200900002
REACTION	(79-AU-19		()/N/81-11-194-MyCKU;;EXP/1HE01	6000200900003
PAR I-UEI		74-r 74-r	1706) 1 2 2 11 11 DC 7(0 0 7(DC 725 0 7()	6000200900004
UECAT -UALA	(81-11-1)	א ר 44 כי	1933 •M IN9UG9149 • 90 • 149UG9137 • 90 • 201	6000200900005
ENDBIG		2	0	6000200900008
		2	10	6000200900007
		2	10	6000200900008
	MR			6000200900010
737	69.			6000200900011
77 5	181.			6000200900012
81	196.			6000200900013
84.4	377.			6000200900014
87.8	398.			6000200900015
91.	413.			6000200900016
94.2	423.			6000200900017
97.3	321.			6000200900018
100.3	315.			6000200900019
103.3	286.			6000200900020
ENDDATA		12		6000200900021
ENDSUBENT		20	. 0	6000200999999
SUBENT	600020)10	750904	3336000201000001
BIB		4	6	6000201000002
REACT ION	(79-AU-19	97(A	\$8N)81 TL-193,CR0,,EXP/THEO)	6000201000003
PART-DET	{81-TL-19	93 , C)G)	6000201000004
DECAY-DATA	(81-TL-1)	93,2	23. MIN, DG, 325., 0.13)	6000201000005
COMMENT	THE GAMM	A-AE	BUNDANCE WAS ESTIMATED. THE ERRORS OF THE	6000201000006
	CROSS SEC	CTIC	INS ARE THEREFORE PRESUMABLY LARGER THAN	6000201000007
	GIVEN IN	ERF	R-ANALYS. (COMMENT BY THE COMPILER)	6000201000008
ENDBIB		6	0	6000201000009
NUCOMMON		~		6000201000010
DATA		2	6	6000201000011
EN .	UAIA			6000201000012
MEV	MB 45			6000201000013
87.8	62.			6000201000014
71.	101.			6000201000012
74.6	272.			6000201000010
71.7	200+			6000201000017
100.3	272+			6000201000010
FNDDATA	£11.	ß		6000201000019
FNDSURFNT		10	n	6000201099999
		10	• •	60.00.2999999999
ENUENIKT		τv	U	~~~~~

CAJaD CPND	Exfor entries		117
ENTRY SUBENT	70001 70001001	750623 750623	Annex 11 7000100000001 CAJaD CPND Exfor70001001000001
TITLE	EXITATION FUNCT	IONS FOR (P,N)= AND (P,2N)=REAC	TIONS 7000100100003 7000100100003
AUTHOR	$(E_{a}A_{a}SKAKUN_{a}A_{y}P)$ Iza(ROMANY)	KLYUCHAREV, YU.N.RAKIVNENKO,	7000100100005
INSTITUT REFERENCE	(4CCPUFT) (J,IZV,39,24,75 V,39,P 24 1975) IZV.AKAD, NAUK SSSR,SER.FIZ.,	7000100100007 7000100100008 7000100100009
FACILITY COMMENT	(HILAC,4CCPUFT) OF COMPILER,WE Have not word f	JSED (HILAC),BECAUSE DICTIONARY DR PROTON ACCELERATOR,	700010010010 18 7000100100011 7000100100012
DETECTOR ERR-ANALYS	(SCIN, NAJCR) UNCERTAINTIES I AND DECAY CURVE ERRORS ASSOCIAT SPREAD IN BEAM INCLUDED	NCLUDE RANDOM ERROR OF PHOTOPEA ANALYSIS AS WELL AS SISTEMATIC ED WITH COUNTER EFFICIECIES AND ENERGY, ERRORS IN DECAY SCHEME	7000100100013 K-AREA 7000100100014 7000100100015 7000100100016 ARE NOT 7000100100017 7000100100018
ANALYSIS STATUS COMMENT ENDBIB NOCOMMON ENDSUBENT	(GAREA) (COMP) OF COMPILER,ACC 19 22 70001002	ELERATORSI EMAX 9 AND 21 MEV	7000100100019 7000100100020 7000100100021 7000100100022 7000100100023 700010019999 700010019999
BIB	4	750023	7000100200002
REACTION SAMPLE PARTODET	(48=CD=110(P,N) 91,5 PER CENT 1 (49=IN=110,DG) 657 KEV PHOTONS (49=IN=110M,DG)	44+IN=110+49+IN=110H,CRO) 10=C0 HALF=LIFE 69 MIN ,1.0 PER DECAY HALF=LIFE 4.9 HR	7000100200003 7000100200004 7000100200005 7000100200006 7000100200007
METHOD ENDBIB NOCOMMON DATA	BB5 KEV PHOTONS (STTA, INTB, BCIN 7 3	10,95 PER DECAT T) 12	7000100200009 7000100200009 7000100200010 7000100200011 7000100200012
EN MEV 615 7,3	DATA DATA MB MB 108, 32 168, 51	-ERR	7000100200013 7000100200014 7000100200015 7000100200016
8, 8,5 9,0 11,8 13,7 15,2 17, 18,3 19,7 20,9 ENDDATA ENDSUBENT 6UBENT	250 75 312 93 340 102 597 179 544 163 262 79 146 43 102 30 73 21 64 19 14 26 70001003 30	730623	7000100200017 7000100200019 7000100200020 7000100200021 7000100200022 7000100200023 7000100200025 7000100200025 7000100200027 7000100299999 7000100300001
BIB REACTION METHOD SAMPLE PART+DET	4 (48=CD=110(P,2N (8ITA,INTB,BCIN 91,5 PER CENT 1 (49=IN=109M,DG) 658 KEV PHOTONS (49=IN=109,DG) 203 KEV PHOTONS	7)U9-IN-109+U9-IN-109M,CRO) T) 10-CD HALF-LIFE 1.3 MIN 1'0 PER DECAY HALF-LIFE 4.3 HR +0.775 PER DECAY	7000100300002 7000100300003 7000100300004 7000100300005 7000100300006 7000100300006 7000100300008 7000100300008 7000100300009
FURATE	7	,	1000100300010

NOCOMMON	118 Annex 11 CAJaD	z 0	7000100300011
EN MEV	DATA MB		7000100300013 7000100300014
13.7 15,2 57. 17.7 18,3 19. 19.7 20.3 20.9 ENDDATA ENDSUBENT	105, 371, 511, 558, 604, 638, 668, 668, 660, 672,	21 74,5 102, 112, 121, 127, 133, 132, 134, 11 23	7 000 100 300 015 7 000 100 300 016 7 000 100 300 017 7 000 100 300 018 7 000 100 300 019 7 000 100 300 020 7 000 100 300 021 7 000 100 300 023 7 000 100 300 024 7 000 100 399 999
SUBENT BIB REACTION METHOD SAMPLE PART=DET	70001 (48-CD-1 (8ïta,In 93.9 Per (49-IN-1 172 Kev 247 Kev	04 750623 4 6 1(P,N)49=IN=111,CRO) 18.8CINT3 CENT 111=CD 11.0G) HALF=LIFE 2.81 D PHOTONS,1.0 PER DECAY + PHOTONS,1.0 PER DECAY	7 000 100 400 001 7 000 100 400 002 7 000 100 400 003 7 000 100 400 005 7 000 100 400 005 7 000 100 400 006 7 000 100 400 008
ENDBIB Nocommon Data En Mev	DATA MB	6 3 16 DATA=ERR MB	7000100400009 7000100400010 7000100400011 7000100400012 7000100400013
4,3 5,2 5,9 6,7 7,3 8,5 9,8 11,8 13,7 15,2 17,3	4,6 27,5 66,6 134, 226, 300, 377, 430, 489, 696, 481, 250, 140, 82,	0 . 69 4 . 13 10 . 20 . 2 33 . 8 45 . 56 . 5 64 . 5 73 . 4 104 . 72 . 37 . 5 21 . 12 . 3	$\begin{array}{c} 7\ 0\ 0\ 0\ 1\ 0\ 0\ 4\ 0\ 0\ 0\ 1\ 4\\ 7\ 0\ 0\ 0\ 1\ 0\ 0\ 4\ 0\ 0\ 0\ 1\ 6\\ 7\ 0\ 0\ 0\ 1\ 0\ 0\ 4\ 0\ 0\ 0\ 1\ 6\\ 7\ 0\ 0\ 0\ 1\ 0\ 0\ 4\ 0\ 0\ 0\ 1\ 6\\ 7\ 0\ 0\ 0\ 1\ 0\ 0\ 4\ 0\ 0\ 0\ 2\ 6\\ 7\ 0\ 0\ 0\ 1\ 0\ 0\ 4\ 0\ 0\ 0\ 2\ 3\\ 7\ 0\ 0\ 0\ 1\ 0\ 0\ 4\ 0\ 0\ 0\ 2\ 3\\ 7\ 0\ 0\ 0\ 1\ 0\ 0\ 4\ 0\ 0\ 0\ 2\ 3\\ 7\ 0\ 0\ 0\ 1\ 0\ 0\ 4\ 0\ 0\ 0\ 2\ 3\\ 7\ 0\ 0\ 0\ 1\ 0\ 0\ 4\ 0\ 0\ 0\ 2\ 3\\ 7\ 0\ 0\ 0\ 1\ 0\ 0\ 4\ 0\ 0\ 0\ 2\ 3\\ 7\ 0\ 0\ 0\ 1\ 0\ 0\ 4\ 0\ 0\ 0\ 2\ 3\\ 7\ 0\ 0\ 0\ 1\ 0\ 0\ 4\ 0\ 0\ 0\ 2\ 3\\ 7\ 0\ 0\ 0\ 1\ 0\ 0\ 4\ 0\ 0\ 0\ 2\ 3\\ 7\ 0\ 0\ 0\ 1\ 0\ 0\ 4\ 0\ 0\ 0\ 2\ 3\\ 7\ 0\ 0\ 0\ 1\ 0\ 0\ 4\ 0\ 0\ 0\ 2\ 3\\ 7\ 0\ 0\ 0\ 1\ 0\ 0\ 4\ 0\ 0\ 0\ 2\ 3\\ 7\ 0\ 0\ 0\ 1\ 0\ 0\ 4\ 0\ 0\ 0\ 2\ 3\\ 7\ 0\ 0\ 0\ 1\ 0\ 0\ 4\ 0\ 0\ 0\ 2\ 3\\ 7\ 0\ 0\ 0\ 1\ 0\ 0\ 4\ 0\ 0\ 0\ 2\ 3\\ 7\ 0\ 0\ 0\ 1\ 0\ 0\ 4\ 0\ 0\ 0\ 2\ 3\\ 7\ 0\ 0\ 0\ 1\ 0\ 0\ 4\ 0\ 0\ 0\ 2\ 3\ 3\ 0\ 0\ 3\ 3\ 0\ 3\ 0\ 3\ 0\ 3\ 0\ 3\ 0\ 3\ 0\ 3\ 3\ 0\ 3\ 0\ 3\ 0\ 3\ 0\ 3\ 0\ 3\ 0\ 3\ 3\ 0\ 3\ 0\ 3\ 0\ 3\ 0\ 3\ 0\ 3\ 0\ 3\ 3\ 0\ 3\ 0\ 3\ 0\ 3\ 0\ 3\ 0\ 3\ 0\ 3\ 3\ 0\ 3\ 0\ 3\ 0\ 3\ 0\ 3\ 0\ 3\ 0\ 3\ 3\ 0\ 3\$
19.7 20.9 ENDDATA ENDSUBENT SUBENT BIB REACTION METHOD SAMPLE PART=DET	72. 61. 70001 (48-CD-1 (87 TA, IN 93.9 PER (49-IN-1 657 KEV (49-IN-1 685 KEV	10.8 9.15 18 29 005 750623 4 7 11(P,2N)49-IN-110+49-IN-110M,C TB,BCINT) CENT 111=CD 10,DG) HALF=LIFE 69 MIN PHOTONS, 1.0 PER DECAY 10M,DG) HALF=LIFE 4.9 HR PHOTONS, 0.95 PER DECAY	7000100400028 7000100400029 7000100400030 7000100400030 7000100500001 7000100500002 7000100500002 7000100500002 7000100500002 7000100500002 7000100500002 7000100500002 7000100500002 7000100500002 7000100500002 7000100500002 7000100500002 7000100500002 7000100500002 7000100500002 7000100500002 7000100500002 7000100500002
ENDBIB Nocommon Data En		7 3 7 DATA=ERR	7000100500010 7000100500011 7000100500011 7000100500011 7000100500013
HEV	MB MB	Ann CA	
-----------------------------	---	-----------	
11,8 13,7 15,2 17,	17. 5.1 332. 100, 628, 188. 711, 214.	C PND	
18 3 19 7	790 237, 917, 274,		
ENDDATA ENDSUBENT	710, 216, 0 21		
SUBENT BIB	70001006 750623 4 7		
REACTION Method	(48-CD-112(P,N)49=1N-112+49-IN-112M,CRO) (SITA,INTB,BCINT)		
SAMPLE PART=DET	94.9 PER CENT 112-CD (49-IN-112H,DG) HALF-LIFE 21 MIN		
	157 KEV PHOTONS:1.0 PER DECAY (49=IN=112,DG) HALF=LIFE: 14.4 MIN		
	7 7		
DATA	3 17 Data Data=Err		
MEV	MB MB		
447 542	17, 5,1 53, 15,9		
5,9	96, 28,8 163, 48,9		
0,0 7,13 7,4	220, 60, 321, 95,2 375, 112,8		
8.2	483, 145, 544, 163,		
9, 12, 5	600, 180, 680, 204,		
14, 15,6	426, 128, 295, 88,5		
17, 18, 3	190, 57, 135, 40,4		
1947 2019	110, 33, 96, 28,8		
ENDSUBENT	19 31 70001007 780423		
BIB	(48+CD=112(P.2N)49+(N+111,CRO)		
METHOD	(STTA, INTB, BCINT) 94.9 PER CENT 112-CD		
PARTODET	(49-IN-111,DG) HALP-LIFE 2.82 D 172 KEV PHOTONS,1.0 PER DECAY +		
ENDBIB	247 KEV PHOTONS,1,0 PER DECAY 6		
NOCOMMON			
	DATA DATA=ERR		
11,8	17. 2,54 \$32. 49.6		
15,2	628 94 711 107		
1843	790 118 917 138		
20.9 ENDDATA	718, 107,		

7 7 7 7 7 7 7 7 7 7	000000000000000000000000000000000000000	111111111111111111111111111111111111111	000000000000000000000000000000000000000	000000000000000000000000000000000000000	555555555555555555555555555555555555555	0000000000	00000000009	0000000009	1111112229	4567890129
7 7 7 7 7 7 7 7 7 7 7 7	000000000000000000000000000000000000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000000000000000000000000000000000000	000000000000000000000000000000000000000	666666666666666	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0000000001111	1234567890123
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 0000000000000000000000000000000000000		0 0000000000000000000000000000000000000	0 0000000000000000000000000000000000000	6 666666666666666666666	0 0000000000000000000000000000000000000	0 0000000000000000000000000000000000000	0 0000000000000000000000000000000000000	1 1111122222222222355	4 567890123456789012
, 7 7 7 7 7 7 7 7 7 7	00000000000				677777777777		900000000000000000000000000000000000000	000000000000000000000000000000000000000	90000000000	9123456789
7 7 7 7 7 7 7 7 7 7	000000000000000000000000000000000000000				77777777777777777					012345678901

119 Annex 11 CAJaD CPND Exfor

	120	
	Annex 11 CAJaD	
ENDSUBENT	20	7000100799999
SUBENT Bib	70001008 750 623 4 5	7000100800001 7000100800002
REACTION	(48-CD-113(P,N)49-IN-113H,CRO)	7000100800003
METHOD	(SITA, INTB, BCINT)	7000100800004
PARTEDET	70°C PER CENT 113BCD (49°IN¢113M.DG) WALFELIFE 99.4 MIN	7000100800006
	393 KEY PHOTONS, 1 0 PER DECAY	7000100800007
ENDBIB	5	7000100800008
NOCOMMON	• (#	7000100800009
FN	DATA DATABERR	7000100800011
MEV	MB MB	7000100800012
4.7	4,6 0,69	7000100800013
5.		7000100800014
5.9	29. 4.39	7000100800015
6 5	59, 8,85	7000100800016
7 4 3	85, 13,3	7000100800017
7 6 8 1 5		7000100800018
9		7000100800020
10,9	140, 21	7000100800021
13,5	56, 8,4	7000100800022
1562	26, 3,9 16. 2.4	7000100800023
18.3	14. 2.1	7000100800025
1975	13, 1,95	7000100800026
-2049	14. 261	7000100800027
ENDDATA	17	1000100800058
ENDSUBENT	27	7000100899999
SUBENT	70001009 750623	7000100900001
BIB	4 ////////////////////////////////////	7000100900002
METHOD	(SITA, INTB, BCINTY	7000100900004
BAMPLE	90.2 PER CENT 113-CD	7000100900005
PART=DET	(49-IN-112M,DG) HALP-LIFE 21 MIN	7000100900006
	197 KEV PHOTONSAI,OJPEK VEGAY 149-TN-119-DGJ - Hai Peitef 14,4 Min	7000100900007
	ATT KEV PHOTONS, 0.0345 PER DECAY	7000100900009
ENDBID	7	7000100900010
NOCOMMON		7000100900011
EN EN		7000100900012
		· · · · · · · · · · · · · · · · · · ·
MEV	MB MB	7000100900014
1657	NGJU 127 758. 216	7000100900015
15.4	910, 272	7000100900017
17	1105, 332,	7000100900018
18.3		7000100900019
2020	917. 274	7000100900020
ENDDATA	9	7000100900022
ENDBUBENT	21	7000100999999
BUBENT RTP	70001010 750623	7000101000001
REACTION	(48-CD-114(P,N)49±1N-114M,CRD)	7000101000003
METHOD	(STTA, INTB, BCINT)	7000101000004
	AT T BED FONT ILALAN	7000101 000000
PARTODET	(490IN0114M,DG) WALFELIFE 50 D	7000101000000
·	192 KEY PHOTONS, 0,965 PER DECAY	7000101000007
FLAG	(1) UPPER LIMIT	7000101000008
ENDBIB	6	700010100 000

	EN DEM	es br m s p	EM	E N D	P B R M S P	EEE		N(Di Ei
	NOANE	NUTEEAA	N E	NI O'		1 (2 (N (
911	DICT	DBBATMR	V 11111111220	C	BA		5791	
		SE CHPT	901346689000	804				
				I M	1 0 1	♀ ▲ U	97	M
	19		89875273 391	BM	IDED	T 8		M
52975 5 5527	8			0	O	A E		0
) N	(N) N (T	L	N	N T	N		N
	ł	i Ť				Ŧ		
	1				((9)3			D
	D				45749		122	AB
1	A '				51	44	2572	٦
2368249321	T				7 3 • 7 • 5			
160715370748	A	7 . 7 5 3 2						
57		D D P Z X X						
		1 1 N R 1 V V			1 N R 1			
		0 1 1			0 1 7 1 P	_		
			9		1 48634	5		
				3		9		4
	6 3	324(PEMHH	3	5	 F F F F	•		
	DM	P B N . 00	5		7) / {
	8	C T D T T	B					A '
	1		T 11323222222		2 I GN		243	T
	1	1) N 1 1 1 N N	A 21307068481		N N 1) 8	6	4203	A
	1.4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) T 1 ,	4	•••	•
2 51	E	7 9)64		- •	/: ())	5		ŗ
5 5574 5567	R	5	RI	-	9" •	-	3	27
	1	I I I	R					9
5	ł				I D F	-		
				1	N	2		
	1			1				7
	5	5 5 1						ł.
					ני נו			71
		6 P 2 5			1 F			
		MERR			31 E		• •	A (- (
		•			M		•	50
					, 95			1
		54			C 9 A			M
					R + Y			
					4			
					•			
		IYYY			4			
		N			1			
		•			I			
		•			N			
					I			

70770770770		000000000000000000000000000000000000000	10 10 10 10 10 10	111111111111111111111111111111111111111	0000000000		0000000000	000000000000000000000000000000000000000			
777777777777777777		000000000000000000000000000000000000000			00001111111111111	000700000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		90191234567890	
7777777777777777						000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	11111111122222	12345678901234	
77777777777777777								000000000000000000000000000000000000000	\$000000011111	91234567890123	
7777777777777	000000000000000000000000000000000000000									456789012345	•

151

Annex 11 CAJaD CPND Exfor

A	122	- D			
18 3 19 5	16, 14,	aIJ	2.4 2.1		
20.9 ENDDATA	15,	17	2,25		
SUBENT BIB	70001	013	75064	23 5	
REACTION Method Sample	(48°CD=1 (STTA,IN 90.5 PFR	16 (P, 2N 18,80 IN CENT	1349-IN 173 116-50	i=115M,C	(RQ)
PARTODET	(49-IN-1 335 KEV	15M, DG) PHOTONS	HALF 0,95	LIFE 4. Per dec	5 HR Ay
ENDBIB Nocommon Data		5		7	
EN MEV	DATA MB		FERR		
11,5	195, 289, 110	24	7 = 4 5 = 4		
16,7	287	41	. 1		
2019 2019 ENDDATA	243, 210,	3 (3) 9	e 5		
ENDSUBENT Endentry		17 13			

7000101200026 7000101200027	,
7000101200028 7000101200029 7000101200029 7000101300001 7000101300003 7000101300003 7000101300009 7000101300009 7000101300009	
7000101300005	;)
$\begin{array}{c} 7 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 3 \ 0 \ 0 \ 0 \ 1 \\ 7 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 3 \ 0 \ 0 \ 0 \ 0 \ 1 \\ 7 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 3 \ 0 \ 0 \ 0 \ 1 \\ 7 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 3 \ 0 \ 0 \ 0 \ 1 \\ 7 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 3 \ 0 \ 0 \ 0 \ 1 \\ 7 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 3 \ 0 \ 0 \ 0 \ 1 \\ 7 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 3 \ 0 \ 0 \ 0 \ 1 \\ 7 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 3 \ 0 \ 0 \ 0 \ 1 \\ 7 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 3 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$	

•

Annex 11 CAJaD CPND Exfor ENTRY 70002 7000200000001 750711 SUBENT 70002001 7000200100001 750711 7000200100002 BIB 12 21 (YIELDS FOR ISOTOPES BA-133M AND BA-133, ISOMER'S TITLE 7000200100003 RATIOS IN REACTIONS C8=133(P,N)BA=133M,G AND 7000200100004 7000200100005 CS-133(D, 2N) BA-133M,G) (P.P. DHITRIEV, G.A. MOLIN, M.V. PANARIN) AUTHOR 7000200100006 INSTITUT (4ČCPFEI) 7000200100007 REFERENCE (J, AE, 35, 61, 73) ATOMNAJA ENERGIJA V. 35, P. 61, 1973 7000200100008 (CICLO, "CCPFEI) EPMAX=22, 1, EDMAX=22,5 MEV FACILITY 7000200100009 (29+CU=65(D, 2N) 30=ZN=65) P.P. DHITRIEV, N.N. KRASNOV, 7000200100010 MONITOR ATOMNAJA ENERGIJA, V.18, P. 184, 1965 7000200100011 (29+CU+65(P, N)30+2N+65) N.N. KRASNOV, P. P. DMITRIEV, 7000200100012 ATOMNAJA ENERGIJA, V.20, P. 57, 1966 7000200100013 DETECTOR (SCIN, NAJCR) 7000200100014 ERR-ANALYS UNCERTAINTIES INCLUDE RANDOM ERROR OF PHOTOPEAK-AREA 7000200100015 AND DECAY CURVE ANALYSIS AS WELL AS SISTEMATIC 7000200100016 ERRORS ASSOCCIATED WITH COUNTER EFFICIECIES AND 7000200100017 SPREAD IN BEAM ENERGY, ERRORS IN DECAY SCHEME ARE NOT 7000200100018 7000200100019 INCLUDED, ANALYSIS 7000200100020 (GAREA) METHOD (SITA, EXTB, EDEG, HONSEP, CHSEP) 7000200100021 7000200100022 STATUS (COMP) 7000200100023 SAMPLE TARGE TS - CS(GL) AND CS(NO3) ENDBIB 21 7000200100024 NOCOMMON 7000200100025 ENDSUBENT 22 7000200199999 SUBENTRY 7002002 750711 7000200200001 **B1B** 7000200200002 2 ъ REACTION (55-CS-133(P,N)56-84-133, TTY) 7000200200003 (56=BA=133,DG) HALF=LIFE 7,2YR PART-DET 7000200200004 356+382 KEV PHOTONS,0.77 PER DECAY 7000200200005 ENDBIB 7000200200006 3 7000200200007 NOCOMMON DATA 3 7000200200008 6 EN DATA DATA-ERR 7000200200009 HEV HKK/MKA+HR MKK/MKA+HR 7000200200010 8,3 0.055 7000200200011 0,008 11.4 0,24 7000200200012 0.036 0,39 13,5 0.059 7000200200013 17.0 0,505 7000200200014 0.077 0.95 19,2 7000200200015 0.083 1,52 0,565 7000200200016 0,041 ENDDATA A 7000200200017 7000200299999 ENDSUBENT 16 I. 70002003 SUBENT 750711 7000200300001 BIB 2 3 7000200300002 REACTION (55+C8+133(P,N)56+BA+133M,TTY) 7000200300003 PART+DET (56+BA+133H, DG) HALF+LIFE 38,9 HR 7000200300004 276 KEV PHOTONS:0,17 PER DECAY 7000200300005 ENDBIB 3 7000200300006 NOCOMMON 7000200300007 3 DATA 7000200300008 6 DATA-ERR EN -DATA 7000200300009 MKK/MKA+HR MKK/MKĀ+HR MEV 7000200300010 28. 8,3 3.9 7000200300011 174. 11_4 26 2 7000200300012 311. 46.8 .13,5 7000200300013

123

124 Annex 11 CAJaD 438. 17.0 65.8 470. 19.2 71. 502 37.8 22,1 ENDDATA 8 ENDSUBENT 16 SUBENT 70002004 750711 BIB 2 3 REACTION (55+C8+133(D,2N)56+BA=133M,TTY) (56-BA=133H, DG) HALF-LIFE 38,9 HR PART-DET 276 KEV PHOTONS, 0, 17 PER DECAY ENDBIB 3 NOCOMMON DATA 3 6 EN DATA DATASFRR HKK/MKA+HR MEV MKK/MKA+HR 9,1 105. 13.9 495. 74, 12,4 860. 130. 14.1 202. 16.6 1345. 19.8 2060. 310. 22.4 2370. 358, ENDDATA 8 ENDSUBENT 16 750711 SUBENT 70002005 BIB ٦, 2 REACTION (55-C8-133(D, 2N) 56-BA-133, TTY) PART-DET (56-BA-133,DG) HALF-LIFE 7.2 YR 356+382 KEV PHOTONS, 0, 77 PER DECAY ENDBIE 7 NOCOMMON DATA 3 6 DATAPERR DATA EN MEV MKK/MKA+HR MKK/MKA+HR 9,1 0,11 0.015 12.4 0,48 0.075 14.1 0,87 0.13 16.6 1,16 0.18 19.8 1,81 0.27 22.4 5.5 0.33 ENDDATA 8 ENDSUBENT 16 ENDENTRY 5

125

Third vers	sion of the KFK CPND Exfor Annex 12
	KFK CPND Exfor 3.)
ALIER	CHARGED PARTICLES, KARLSRUTE
*COMMENT	1) I SO-QUANT CHED-QUANT AND NUC-CUANT ARE NOT USED IN THE
*	CASE OF CHARGED PARTICLE INDUCED REACTIONS. THESE
*	KEYWORDS ARE REPLACED BY "REACTION".
*	2) THE PARTICLE OR NUCLIDE DETECTED MUST BE EVIDENT EITHER FROM
*	"ISC-GUANT", "REACTION", "PART-DET", OR "DECAY-DATA".
*	3) THE HALF-LIFE SHOULD BE GIVEN UNDER "DECAY-DATA" AND
*	NOT UNDER 'HALF-LIFE'.
* *	AJIHE PRUDUCI NUCLEUS SHOULD BE MENTIUNED UNDER
REACTION	KEYWORD + CODEC INFORMATION IN PARENTHESES OBLIGATORY
NEAGT TON	FOR CHARGED PARTICLE INDUCED REACTIONS.
	UP TO 9 SUBFIELDS (SF1(SF2,SF3)SF4,SF5,SF6,SF7,SF8,SF9)
	SF1 TARGET NUCLIDE Z-S-A(-MX) (SEE "ISO-QUANT")
	SF2 FROJECTILE (SEE DICT 13)
	SF3 DUTGDING PARTICLE(S) (SEE DICT 13)
	SF4 PRODUCT NUCLIDE Z-S-A(-MX)(SEE 'ISO-QUANT')
	SES BRANCH
	SFO GUANTITI MERSURED (SEE DICT TO)
	SF8 MODIFIER (SEE DICT 12)
	SF9 CLASSIFICATION (SEE DICT.12)
	THE SUBFIELDS ARE OBLIGATORY IF RELEVANT. A FREE TEXT
	EXPLANATION HAS TO BE ADDED, IF ONE OR MORE OF THESE
	SUBFIELDS ARE ELANK.
	THE RULES FOR CONBINATIONS OF DIFFERENT OUTGOING
	PARTICLES OF PRODUCT NUCLIDES ARE SIMILAR TO THE RULES
	OUTGOING DARTICLES IN SE3 MUST BE SEDARATED BY + .
	$F \cdot G \cdot 2N + P + A \cdot IF SF5 TO SF9 CONTAIN MORE THAN$
	ONE CODE A SLASH IS USED FOR SEPARATION.
FACILITY	THE FIRST SUBFIELD OF THE KEYWORD GIVING THE TYPE OF THE
	FACILITY (SEE DICT. 18) IS COLIGATORY EXCEPT WHEN NOT
	RELEVANT. THE SECOND SUBFIELD GIVING THE LOCATION OF THE
	FACILITY (SEE DICT. 3) IS OPTIONAL. CODED INFORMATION IN
	REVERD LADDITICAN RESULTS OPTIONAL, EREE TEXT OF CODED
AUD RES	INFORMATION IN PARENTHESES PLUS FREE TEXT (SEE DICT. 20).
MONITOR	KEYWORD OBLIGATORY EXCEPT WHEN NOT RELEVANT. CODED
	INFORMATION UP TO 13 SUBFIELDS IN PARENTHESES PLUS
	FREE TEXT.
	SF1 TO SF4 MONITOR REACTION, NOTATION AS GIVEN
	IN 'REACTION' SF1 TO SF4.
	SF5 AGCESSION NUMBER OF MUNITUR REACTION IN EXFOR
	SEG FIRST AUTHOR OF PUBLICATION, ADDITIONAL AUTHORS
	ARE NOTED BY +. EXAMPLE. LANGE+.
	SF7 TO SF11 OR SF12 REFERENCE, NOTATION AS GIVEN IN
	"REFERENCE" .
	NEXT SUBFIELD (SF12 CR SF13) OPTIONAL INFORMATION
	ABOUT THE CATA, AS EVALUATED OR RECOMMENDED DATA.
DAD	(SEE DICT 12)
RADTDET	TE THE NUCLIDE DREEVED IS NOT OBVIOUS EDON PREACTION OF
	DECAY-DATA'. THE FIRST SUBFIELD GIVES THE NUCLIDE AND THE
	ADDITIONAL SUBFIELDS THE TYPES OF THE RADIATION OBSERVED.
	(SEE DICT. 13).
	IF KEYWORD PRESENT THE DATA FOR OBSERVED RADIATION HAS TO
	BE GIVEN UNDER "DECAY-DATA".
DEC AY -D AT	A KEYWORD OPTIONAL. IF KEYWORD PRESENT, THEN CODED
	INFORMATION IN PARENTHESES CHLIGATORY. THE SUBFIELDS
	ARE SEMARATEL BI LUMMAS (SPI)SP29 0000) SEI NICLIDE 7-S-A(-MY) (SEE IISC-CHANTI)
	SLI HACEIDE E-STAT-MAN (SEE IISU-AANI')

SF2 HALF-LIFE

An	126 nex	12
REL-REF		<pre>SF3 TYPE OF RADIATION (SEE DICT. 13) SF4 ENERGY OF RADIATION IN KEV SF5 ABUNDANCE OF RADIATION PER DECAY SF SF3.SF4 AND SF5 MAY BE REPEATED AS OFTEN AS NECESSARY FREE TEXT OPTICNAL. KEYWORD OPTICNAL. CODED INFORMATION UP TO 8 SUBFIELDS IN PARENTHESES PLUS FREE TEXT. IN SF1 THE REASON FOR CITING THE REFERENCE IS GIVEN (SEE DICT. 2C). IF THE CODE 'N' IS USED A FREE TEXT IS DBLIGATORY. SF2 FIRST AUTHOR OF PUBLICATION, ADDITIGNAL AUTHORS ARE NOTED BY +.</pre>
*COMMENT * * * PICT	٦	SF3 TO SF8 REFERENCE, NOTATION AS GIVEN IN "REFERENCE" THE KEYWORD "REL-REF" REFERS TO PUBLICATIONS WHICH ARE RELEVANT TO AN ENTRY OR A SUBENTRY, FOR INSTANCE TO THOSE PUBLICATIONS WHICH ARE INCLUDED IN AN E VALUATION.
1USASTB 1USANAL 2JAPNII DICT	5	(STATE UNIVERSITY OF NEW YORK, STONY BROOK, N.Y) (FERMI NATIONAL LAB.,BATAVIA, ILLINOIS) (NIIGATA UNIV., NIIGATA)
NC A		(NUOVO CIMENTO) NGOVO CIMENTO SER.10 2ITY STARTING WITH VOL.1(1955) UNTIL VOL.39 ND.4 (1965) (NUOVO CIMENTO A) NUOVO CIMENTO SECTION A,SER.10 2ITY STARTING WITH VOL.40 NO.1(1965) UNTIL VOL.70(1970) SER.11 STARTING WITH VOL.1(1971)
NCNB		(NUGVO CIMENTC B) NUGVO CIMENTO SECTION B,SER.10 2ITY STARTING WITH VOL.40 NO.1(1965) UNTIL VOL.70(1970) SER.11 STARTING WITH VOL.1(1971) UNTIL VOL.61(48) AND EPOM VOL.71(58)
PPS/A		(PROC.PHYS.SCC.(LONDON)SECT.A) PROCEEDINGS OF THE 2UK PHYSICAL SOCIETY,LONDON,SECTION A EXISTING VOL.62 JAN.1949 - VOL.70 DEC.1957
PRS/A		(PROC.ROY.SOC.,LONDON,SER.A) PROCEEDINGS OF THE 2UK ROYAL SOCIETY,LONDON,SERIES A,MATHEMATICAL AND PHYSICAL SCIENCES
DICT CERN-	6	(CERN EUROP.ORG.FOR NUCL.RES.) CERN EUROPEAN 2ZZZCER ORGANIZATION FOR NUCLEAR RESEARCH
SIG	10	(CROSS SECTION) CROSS SECTION FOR THE FORMATION OF THE SPECIFIED PRODUCT NUCLIDE OR THE SPECIFIED REACTION-
TTY		(THICK-TARGET-YIELD) THICK-TARGET-YIELD FOR THE SPECIFIED PREDUCT NUCLIDE
FY		(FISSION YIELD) INDEPENDENT, CUMULATIVE AND TOTAL CHAIN YIELD SEE MCDIFIER (DICT 12)
PY		(PRODUCT YIELD) IN CASE OF CHARGED PARTICLE REACTIONS THIS CODEWORD IS USED WHENEVER CRO. TTY, FCR OR FY CANNOT BE APPLIED, E.G. AVERAGE CROSS SECTION FOR A LIMITED ENERGY RANGE. EXPLANATORY FREE TEXT IS OBLIGATORY.
DICT	12	
BIN IND		BINARY INDEPENDENT YIELD OF THE PRODUCT NUCLIDE VIA DIRECT FORMATION GNLY
CUM		CUMULATIVE YIELD, I.E. YIELD OF THE PRODUCT NUCLIDE VIA DIRECT FORMATION AND RADIOACTIVE DECAY
*COMMENT		THE MODIFIER IND AND CUM ARE USED FOR ALL KINDS OF
*		NUCLEAR REACTIONS.
*COMMENT		CODE WORDS FOR CLASSIFICATION
EXP		EXPERIMENTAL DATA
THEO		CALCULATIONS EASED ON THEORY

127 Annex 12 KFK CPND Exfor 3.)

EVAL		KFK CPND Exfor
EVAL		EVALUATED DATA
RECOM		RECOMMENDED CATA
DICT	13	
XR		(X-RAYS)
¥		(UNDEFINED CLIGBING PARTICLES) IF THE AUTHOR DOES NOT
~		STATE THE KIND AND ANALOUS OF THE ANTAL ADVIS DADIES
		STATE THE KINE AND NUMBER OF THE DUIGUING PARTICLES
		IN CHARGED PARTICLE INDUCED REACTIONS OR IF AMBIGUITY
		EXISTS IN RESPECT TO THE REACTION TYPES INVOLVED
EC		(ELECTRON CAPTURE)
SF		(SPONTANEOUS FISSION)
	16	
COMP	10	NATA OPTAINED FOOL DUPLICATION BY THE CONDITED
COMP		DATA UDIAINEL FRUM PUBLICATION BY THE CUMPTLER,
		CHECKED, BUT NOT APPROVED BY THE AUTHOR
CURVE		TABULAR DATA OFTAINED FROM A CURVE WITH A DATA-POINT
		READER
CPX-CURV	/E	DATA OBTAINED FROM A CURVE WITH A DATA-POINT READER
	-	RY KEEAMCGOMAN ET ALAS DUBLISHED IN
		DIN GRUES (1064) ECO PROLICION OF MN EC CO
		URNE-CHA-1 (1964) FUR PRUDUCIIUN UF MN;FE;CU.
		ORNL-CPX-2 (1964) FOR PRODUCTION OF NI,CU.
		NUCL-DATA,A1 (1966) FOR PRODUCTION OF LI,BE,B
		NUCL.DATA.A2 (1966) FOR PRODUCTION OF C.
		NUCL DATA A3 (1967) FOR PRODUCTION OF N.O.
DICT	18	
	10	
LINAC		(LINEAR ACCEDERATOR)
ISOCYC		(ISOCHRONOUS-CYCLGTRON,AVF-CYCLGTRON)
SYNCYC		(SYNCHROCYCLCTFCN)
DICT	20	ADDITICNAL RESULTS / RELATED REFERENCES
RANGE		(RANGE OF RECOILS MEASURED)
DECAY		(DECAY PROPERTIES OF THE PRODUCT NUCLIDE)
TDAT		(ISCHERIC DATIO)
IRAT		
ANGD		(ANGULAR DISTRIBUTION)
E		REFERENCE USED IN THE EVALUATION
С		CRITICAL REMARKS
N		NOTE. SEE NEXT FREE TEXT
DICT	21	
		CRACE SECTIONS OF VIELDS DETERMINED BY THE COLLECTION
REC		(CRUSS SECTIONS OR TIELDS DETERMINED BY THE COLLECTION
		OF RECUILS)
HEJET		(COLLECTION BY HE-JET)
CHS EP		(CHEMICAL SEFARATION)
ASEP		(SEPARATION BY MASS SEPARATOR)
SITA		(SINGLE TARGET IRRADIATIONS)
STTA		
JITA		(IDRADIATIONS WITH INTERNAL REAN)
INTE		(IRRADIATIONS WITH INTERNAL DEAM)
EXTB		(IRRADIATIONS WITH EXTERNAL BEAM)
EDEG		(ENERGY-DEGRACATION BY FOILS) ENERGY-DEGRADATION OF THE
		BEAM BEFORE HIJTING THE TARGET ARRANGEMENT
MONSEP		(SEPARATE MCNITORFOIL)
MONMIX		(MIXED MONITCR) WONITOR AND TARGET COMBINED AS CHEMICAL
		CONDITION OF MINTUPE OF MONITOR PEACTION HAS THE SAME
		COMPOSIDE OR MINISTER OR MUNISTER CALIFOR HAS THE SAME
		TARGET NUCLIDE AS THE REACTION GIVEN UNDER "REACTION".
BCINT		(BEAM CURRENT INTEGRATED) CODEWORD USED ONLY IF VALUES
		GIVEN IN THE DATA SECTION ARE BASED ON THIS
		MEASUREMENT
DICT	22	
GEMUC		(GEIGER MUELLER COUNTER)
ARCOT		(ANNIHI)ATION PADIATION COINCIDENCE COUNTED)
		TONICATION CHANGEDS
TUCH		LIUNISATIUN CHAMEEKJ
COIN		(CUINCIDENCE COUNTER ARRANGEMENT)
DICT	23	
GAREA		(PHOTOPEAK-AREA ANALYSIS)
INTANG		(INTEGRATION OF ANGULAR DISTRIBUTION)
DICT	24	
	 	THE MEANING OF THE CODE LENG SHOULD BE EXTENDED TO
		THE MENTING OF THE CODE "LA" SHOULD BE EXTENDED TO
*		ENERGY OF INCLUENT PROJECTILET LAB-SYSTEM". THIS

	128
Ann	ex 12
*	EXTENSION SHOULD ALSO APPLY TO THE OTHER CODEWORDS,
*	WHICH CONTAIN "EN", LIKE "EN-CM".
DATA	HEADING FOR COLUMN GIVING THE QUANTITY SPECIFIED
	UNDER "ISO-GLANT" CR "REACTION"
RATIO	HEADING FOR COLUMN GIVING THE RATIO SPECIFIED UNDER
	'ISO-QUANT' CR 'REACTION', CR THE QUANTITY/STANDARD
SUM	HEADING FOR COLUMN GIVING THE SUM SPECIFIED UNDER
	• REACTION •
SUM-ERR	SUM-ERROR. EXPLANATION UNDER *ERR-ANALYS*
+SUM-ERR	+UNSYMMETRIC SUM-ERROR. EXPLANATION UNDER "ERR-ANALYS"
-SUM-ERR	-UNSYMMETRIC SUM-ERROR. EXPLANATION UNDER 'ERR-ANALYS'
TINON	HEADING FOR THE COLUMN GIVING VALUES FOR THE MONITOR.
ENDDICTION	4
END AL TER	

BROOKHAVEN NATIONAL LABORATORY

MEMORANDUM

DATE: July 30, 1975

то:	Task Force on Generalized ENDF Format
FROM:	C. L. Dunford
SUBJECT :	Results of Task Force Meeting July 15-16 at ORNL

I am enclosing a discussion of the organization of a generalized evaluated nuclear data file. In particular, I will explore the definition of the logical units of such a data file. At the same time, I will attempt to draw some conclusions about the ENDF format as we had agreed to do at the meeting. The final section of the enclosure will consist of some general statements about the structure of these logical units. However, I will defer in detail to Bob MacFarlane to prepare a discussion on this point. One general comment on the future ENDF. If we are proceeding on the assumption that there exists only one file, from which all special purpose evaluated data files will be derived, then the concept of the General Purpose file consisting of only complete evaluations must disappear. The evaluator would be responsible for seeing that any new data entered is compatible with what currently exists in the file.

er

Distribution:

- R. Howerton
- R. MacFarlane
- S. Pearlstein
- F. Perey
- R. Roussin

I. Background on File Organization

First, I would like to introduce the concept of a "key" which is fundamental to all data base management systems. A key is a numeric or alphanumeric descriptor which is used to define the contents of a logical unit of information in the data base. A key or a combination of keys can be used to define and retrieve sections from the data base. Therefore a set of keys must be defined such that they are unique and comprehensive. In the following sections, I will attempt to define a set of keys for nuclear data.

II. Interpretation of Present Formats

The ENDF/B system can be interpreted as having three keys.

- 1. MAT target nucleus
- 2. MF property
- 3. MT reaction or other quantity

The ENDL format which was proposed as a successor to ENDF/B has the following keys.

1.	ZA	- target nucleus
2.	Y _i	- incident particle
3.	Y _o	- outgoing particle whose property is being described
4.	C	- reaction or structure designator
5.	I	- reaction property
6.	S	- reaction modifier
7.	$\mathbf{x}_{i=1.4}$	- up to four parameters defined by S

It is clear from this comparison that ENDF/B is much to restrictive. The only way to generalize ENDF without extreme difficulties is to expand the meaning of the three keys as I proposed in my December 1974 Memo. One quickly runs out of integers if MAT stands for projectile, target, and target state all at one time.

The ENDL system is far more comprehensive using six independent and one dependent key $(X_{i=1,4})$. The two major deficiencies of the ENDL system is the lack of a key for the <u>state of the target</u> and the use of a <u>dependent</u> key.

III. Keys Proposed for a Generalized ENDF/B

A large part of the Task Force Meeting was devoted to describing the types of nuclear data to be considered. In general the bounds on the type of information to be stored are:

- 1. No complex projectile, that is one for which the state of the projectile must be given.
- 2. Only information about the initial and final properties of the nuclear system are important.

Within these restrictions, the following nine keys seem to be adequate.

- 1. Projectile
- 2. Target nucleus
- 3. Target nucleus excitation energy
- 4. Process identifier
- 5. Process modifier
- 6. Residual nucleus
- 7. Residual nucleus excitation energy
- 8. Product whose property is tabulated
- 9. Property being tabulated

Projectile - neutron, proton, electron, etc. or none.

- <u>Tarket nucleus</u> isotope, element, compound or alloy (may be parent isotope in radioactive decay data)
- <u>Process identifier</u> (?, Total), (?, 2p), (?, Xn), (β^{\dagger} decay), (α decay) and such special information like resonance parameters, S(α , β) and level structure.
- <u>Process modifier</u> isomer production, cross section ratio etc. (much restricted compared to ENDL's S-parameter)
- <u>Product whose property is tabulated</u> generally a light particle such as γ , neutron, β etc. but in the case of recoil spectra, it could be a heavy nucleus.
- <u>Property being tabulated</u> cross section, secondary distributions, energy deposits, etc.

The meaning of the remaining three keys is obvious. It is clear that the residual nucleus is redundant if projectile, target and reaction are known (or if parent and decay mode are known). However, it is possible for a process to be complex or indeterminate in which case the residual nucleus must be given. (See fourth example below.)

IV. Comparison of Proposed File Structure with Others.

key	ENDF/B	ENDL
1	No	Yes (Y _i)
2	Yes (MAT)	Yes (ZĀ)
3	No (separate MAT)	No
4	Yes (MT)	Yes (C)

(cont'd)

<u>Key</u>	ENDF/B	ENDL
5	No (separate MT)	Yes (S)
6	No	Yes (S=5)
7	No	Yes (S=5)
8	Partially (MF)	Yes (Y ₀)
9	Yes (MF)	Yes (I)

Serious difficulties can arise when a single key is used to serve several functions which is the case in general in ENDF/B. That fact is one of the two major difficulties in generalizing ENDF/B.

V. Construction of keys

It is not clear to me in most cases whether the keys should be simple alphanumeric codes or whether integer equivalents are preferable. For the keys giving excitation energies, clearly a floating point number is required. The process modifier and property keys should be integer equivalents.

We spent considerable time discussing the construction of the process identifier. Although this discussion was very useful as an aid to exploring the range of data types, I have reached the conclusion that our final product was too restrictive. We will have to adopt a set of numerical equivalents. As part of the organization of this table a way must be found to tell whether a given particle is one of the products of a reaction. ENDF/B does this in a primitive way (neutrons or no neutrons). ENDL is somewhat better, but still breaks down when looking for a given charged particle. Something like Table 3 of the ENDL documentation will need to be constructed, perhaps using more digits to describe a multi-particle final system. For example the reaction descriptor for

$$(y, n d 2 \alpha \gamma) \equiv 1366 \leftarrow Alpha 2$$

In the ENDL system the particle order in the reaction designator is important. For example, $(y,np\gamma)$ is different from $(y,pn\gamma)$. If it is not possible to determine anything but $(y,np\gamma) + (y,pn\gamma)$ we must be able to enter such a sum cross section easily. This can be done by using a "Process modifier" key which says "particle order not known".

VI. Examples of Use of Keys

- 1. Fe (n,Tot) σ(E) /N/FE/0.0/TOT/ / / / /
- 2. Am^{241M}(n,Xf) O(E) /N/AM-241/.0486/Xf/ / / / /

(cont'd)

- 3. $O^{16}(p,p'\gamma)$ 6.13 Mev level excitation $\frac{d\sigma}{d\Omega}$ (E, θ) /P/0-16/0.0/p γ / $\frac{\text{Level}}{\text{Excitation}}$ / 0-16/6.13/P/ $\frac{d\sigma}{d\Omega}$ /
- 4. Ti(n,?) Sc⁴⁸ σ(E) /N/TI/0.0/ / /SC-46/0.0/ /σ(E)
- 5. $Nb^{93}(n,n'\gamma)$ Isomer production 29 kev level $\sigma(E)$ /N/NB-93/0.0/ny/ $\frac{1}{Production}$ /NB-93/.029/ $\sigma(E)$
- 6. $Nb^{93}(n,n'\gamma) \sigma(E,E_{\gamma})$ /N/NB-93/0.0/n γ / / / $\gamma/\sigma(E,E_{\gamma})$
- 7. Tm^{183} β^{-} decay γ -spectrum / /TM-183/0.0/ β^{-} / / / γ /N(E_{γ})
- 8. Fe(n,p) Recoil spectrum
 /N/Fe/0.0/p/ / / /Fe/N(E_{Fe})

Resonance parameters should be treated as an exception to the generalized file structure. Each logical unit would describe several rather than a single nuclear reaction.

9. Pu²³⁹ MLBW resonance parameters /N/PU-239/0.0/Res/MLBW/ / / /

VII. Structure of a Section

The structure of a section will be dependent on the function being described and its parameterization. I think much of the ENDF/B structure as extended in my December Memo could be carried over to the generalized file. Perhaps multiplicities should not be included in the section with secondary distribution functions but have their own section. (In many cases the multiplicity is energy independent and uniquely defined for a reaction).

Each section may have multiple subsections when more than one functional representation is required for the property description. There should be shortened form for indicating default conditions such as isotropic angular distributions or equal probability energy distributions.

It is important that the format recognize the unity between discrete and continuum representations. In particular, all secondary distributions should be given in terms of a sum over discrete (delta functions) values and a continuum.

The TABL record should be generalized so that the unit of information is variable length. For example the units may be

1.	Ε, σ(Ε)	(2 per unit)
2.	E, $\sigma(E)$, $\frac{d^2\sigma(E)}{dE^2}$	(3 per unit)
3.	Ε,σ(Ε), Δ σ(Ε)	(3 per unit)
4.	ε _r , g, Γ, Γ _n , Γ _ζ , Γ _f	(6 per unit)

Finally the structure of a resonance parameter record should be such that the parameters and any smooth background cross section should be in the <u>same section</u>.

er