Japan Charged-Particle Nuclear Reaction Data Group

Division of Physics, Graduate School of Science Hokkaido University 060-0810 Sapporo, JAPAN

E-mail: nrdf@jcprg.org *Internet*: http://www.jcprg.org/ *Telephone* +81(JPN)-11-706-2684 *Facsimile* +81(JPN)-11-706-4850

Memo CP-E/065

Date:	February 24, 2005
To:	Distribution
From:	OTSUKA Naohiko and Victoria McLane
Subject:	IPA as parameter code and short-hand nuclide code in SF7
Reference :	CP-C/354

We have studied the procedure of C1118.003 (Fig. 5 a-c, p024609-5) and 006 (Fig. 9, 10, 13 and 14), because we found many theoretists from JCPRG in the citation list of this article.

1) We can find an example of the intermediate state before break up in LEXFOR "Partial Reaction - Reactions that lead by the same particle sequence to the same reaction products"

Examples:

a.) ${}^{12}C(n,n'){}^{12*}C \to \alpha + {}^{8*}Be \to 2\alpha$ b.) ${}^{12}C(n,n'){}^{12*}C \to 3\alpha$

REACTION 1(6-C-12(N,N+2A)2-HE-4,PAR,SIG) 2(6-C-12(N,N+2A)2-HE-4,PAR,SIG) EN-SEC 1(E-LVL,4-BE-8) 2(E-LVL,6-C-12)

So SF3="3A" (We can use INL in C1118.002, 004 and 005 because the degrees of freedom of ⁸Be and α does not appear in these subentries).

2) We agree on the use of short-hand nuclide code BE8 in SF7. We may add this code in Dict. 33.

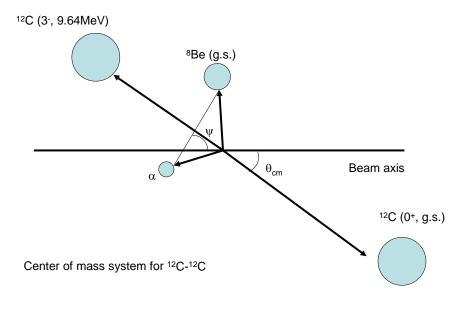
- 3) Use of IPA in SF6 looks to be good. We can link IPA and particle considered easily.
- 4) IPA refers angle between ${}^{12}C$ and beam axis (not two ${}^{12}C$), so IPA is referred by RSD.
- 5) PAR is characterized by levels of ⁸Be and ¹²C in final state and ¹²C before break up. So we must specify these three levels (LEVEL-PROP can specify these levels).
- 6) The 2nd angle given, between ⁸Be and α is for the projection of the relative velocity if the 2 particles. Therefore, we recommend using MSC in SF8 until such time as we may encounter

more such data.

We propose one heading in addition to two headings proposed in CP-C/354:

Dictionary 24 (Headings)

ANG1-CM-MN	Lower limit of 1st angle in c.m. system
ANG1-CM-MX	Upper limit of 1st angle in c.m. system
ANG2-RL-CM	2nd angle between 2 outgoing particles in c.m. system


Coding sample based on comments:

SUBENT	C111800	3 200501	11			C1118	3	1
BIB		4	7			C1118	3	2
REACTION	(6-C-12(6-	C-12,3A)6-0	C-12,PAR,IPA	/DA,RSD/A+B	E8,MSC)	C1118	3	3
	- ANG1-CM	is angle be	etween outgo	ing 12C and	beam in	C1118	3	4
	the cent	er of mass	system betw	een two 12C		C1118	3	5
	- ANG2-RL-	CM is angle	e between re	lative velo	city of	C1118	3	6
	alpha-8B	e and beam	in the cent	er of mass	system	C1118	3	7
	between	alpha and 8	BBe.			C1118	3	8
EN-SEC	(E-LVL1,6-	C-12) Inter	rmediate sta	te		C1118	3	9
	(E-LVL2,4-	BE-8)				C1118	3	10
	(E-LVL3,6-	C-12)				C1118	3	11
LEVEL-PROP	(6-C-12,E-	LVL=0.00,SI	PIN=0,PARITY	=+1.)		C1118	3	12
	(6-C-12,E-	LVL=9.64,SI	PIN=3,PARITY	=-1.)		C1118	3	13
ERR-ANALYS	(DATA-ERR)	No informa	ation given			C1118	3	14
STATUS	Data taken	from Fig.	5 of the jo	urnal artic	le	C1118	3	15
ENDBIB		7	0			C1118	3	16
COMMON		2	3			C1118	3	17
E-LVL1	E-LVL2	E-LVL3	ANG1-CM-MN	ANG1-CM-MX	ANG2-RSL	C1118	3	18
MEV	MEV	MEV	ADEG	ADEG	ADEG	C1118	3	19
9.64	0.0	0.0	40.0	95.0	10.0	C1118	3	20
ENDCOMMON		3	0			C1118	3	21
DATA		5	39			C1118	3	22
ANG2-RL-CM	EN-CM	DATA-CM	DATA-ERR			C1118	3	23
ADEG	MEV	MU-B/SR	MU-B/SR			C1118	3	24
5.	2.540E+0	1 3.054E+0	03 2.181E+0	2		C1118	3	25
5.	2.579E+0	1 2.727E+0	03 1.818E+0	2		C1118	3	26
5.	2.698E+0	1 6.145E+0	03 5.090E+0	2		C1118	3	27

Geometry:

- θ_{cm} and ψ are given under headings ANG1–CM and ANG2–RL–CM, respectively.

- ${}^{12}C(3)$, ${}^{8}Be(g.s.)$, and ${}^{12}C(0^{+})$ levels are given under E-LVL1, 2 and 3, respectively.

Distribution:

S. Babykina, CAJaD	J.H. Chang, KAERI	M. Chiba, JCPRG	F.E. Chukreev, CAJaD
S. Dunaeva, NDS	Z.G. Ge, CNDC	O. Gritzay, KINR	A. Hasegawa, JAERI
H. Henriksson, NEA-DB	A. Kaltchenko, KINR	K. Katō, JCPRG	M. Lammer, NDS
S. Maev, CJD	V.N. Manokhin, CJD	V. McLane, NNDC	M. Mikhaylyukova, CJD
C. Nordborg, NEA-DB	P. Obložinský, NNDC	A. Ohnishi, JCPRG	D. Rochman, NNDC
O. Schwerer, NDS	S. Tákacs, ATOMKI	S. Taova, VNIIEF	T. Tárkányi, ATOMKI
V. Varlamov, CDFE	M. Vlasov, KINR	M. Wirtz, NDS	H.W. Yu, CNDC
V. Zerkin, NDS	Y.X. Zhuang, CNDC	EXFOR, NEA-DB	JCPRG Distribution