## Japan Charged-Particle Nuclear Reaction Data Group

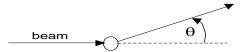
Division of Physics, Graduate School of Science Hokkaido University 060-0810 Sapporo, JAPAN

*E-mail*: nrdf@jcprg.org *Internet*: http://www.jcprg.org/ *Telephone* +81(JPN)-11-706-2684 *Facsimile* +81(JPN)-11-706-4850

## Memo CP-E/049

Date:August 20, 2004To:DistributionFrom:OTSUKA NaohikoSubject:Angular distribution dataReference:CP-C/346

I have three comments on CP-C/346:


1. Data heading for azimuthal angle:

If we limit the use of ANG-AZ to "Azimuthal angle between reaction planes of two particles", ANG-AZ-RL or ANG-RL-AZ may be better than ANG-AZ.

## 2. Unit for relative angular distribution:

In general, relative data must be combined with ARB-UNITS. The following correction may be needed:

<u>Angular distribution</u>: probability for a particle to be emitted into an area of solid angle  $d\Omega$  lying at a mean angle of  $\theta$  to the incident beam direction in the reaction plane; given as  $\sigma(\theta) = d\sigma/d\Omega$ . The data are given in units of cross section per unit solid angle (*e.g.*, mb/sr).



REACTION coding: DA in SF6. Units are of the type DA (e.g., B/SR)

Data may also be given as relative angular distribution  $W(\theta)$ ; the data are dimensionless, and are most often normalized to  $W(90^\circ) = 1$ .

REACTION coding: DA in SF6; REL in SF8.

So far, I understood the difference between ", DA/DA" and angular correlation ", DA/CRL" is in their normalization, namely, absolute value  $\sigma$  ( $\theta_a$ ,  $\theta_b$ ) or relative value (incl. count)  $W(\theta_a, \theta_b)$ . DA/DA has not been connected with REL (only one exception is T0224).

This time V. McLane proposes the use of ", DA/DA, \*, REL" (relative angular correlation in her draft) for M0469.003, M0627.003-004, O0460.010-011. Does CP-C/346 propose replacing ", DA/CRL" by ", DA/DA, \*, REL" for the data which are differential with respect to two angles? I prefer this solution, and propose the following addition into her draft:

<u>Angular correlation</u>: probability that, if a particle *a* in emitted at a mean angle of  $\theta_a$  to the incident beam direction in the reaction plane, particle *b* will be emitted at a mean angle of  $\theta_b$  to the incident beam direction in the same plane (coplanar); given as  $d^2\sigma/d\Omega_a d\Omega_b$ . The data are given in units of cross section per unit solid angle squared (*e.g.*, mb/sr<sup>2</sup>).

REACTION coding: DA/DA in SF6; particles in SF7 as a/b (*e.g.*, P/D). The angles  $\theta_a$  and  $\theta_b$  are coded under the headings ANG1 and ANG2, in the same order as the particles appear in SF7. Units are of the type DA2 (*e.g.*, MB/SR2)

Data may also be given as relative angular correlation  $W(\theta_a, \theta_b)$ ;

*REACTION coding:* DA in SF6; REL in SF8. Units are ARB-UNITS.

If CP-C/346 is accepted, the use of ", DA/CRL" is strictly limited to the quantities which refer only one angle with respect to particle pair (i.e. mean angle of two particle  $\theta_m$ , relative angle between two particle  $\theta_{rel}$ ). Therefore updates will be necessary for many ", DA/CRL" entries in our present database.

By the way, what is the difference between ", DA/CRL" and ", DA/CRL, , REL" in present rule? I found the latter quantity codes in some entries.

## **Distribution:**

...

| S. Babykina, CAJaD   | J.H. Chang, KAERI   | M. Chiba, JCPRG     | F.E. Chukreev, CAJaD |
|----------------------|---------------------|---------------------|----------------------|
| S. Dunaeva, NDS      | Z.G. Ge, CNDC       | O. Gritzay, KINR    | A. Hasegawa, JAERI   |
| A. Kaltchenko, KINR  | K. Katō, JCPRG      | M. Kellet, NEA-DB   | M. Lammer, NDS       |
| M. Lammer, NDS       | S. Maev, CJD        | V.N. Manokhin, CJD  | V. McLane, NNDC      |
| M.Mikhaylyukova, CJD | C. Nordborg, NEA-DB | P. Oblozinsky, NNDC | A. Ohnishi, JCPRG    |
| O. Schwerer, NDS     | S. Takacs, ATOMKI   | S. Taova, VNIIEF    | T. Tárkányi, ATOMKI  |
| V. Pronyaev, NDS     | V. Varlamov, CDFE   | M. Vlasov, KINR     | M. Wirtz, NDS        |
| H.W. Yu, CNDC        | V. Zerkin, NDS      | Y.X. Zhuang, CNDC   | EXFOR, NEA-DB        |