Nuclear Data Section International Atomic Energy Agency P.O.Box 100, A-1400 Vienna, Austria

Memo CP-D/631

Date:	31 March 2010
To:	Distribution
From:	N. Otsuka, S. Takács

Subject: Production thick target yield

The production (unsaturated, time-dependent) yield is proportional to the beam current, but not proportional to the irradiation time. (e,g, irradiation for 1 hour with 2 μ A does not give the same activity as 2 hours and 1 μ A irradiation.. See also Eqs.(3) and (4) in the appendix.) The production yield is a function of the irradiation time and its unit should be Bq/ μ A rather than Bq/ μ A•hr. IAEA-TECDOC-1211 (Charged-Particle Cross Section Database for Medical Radioisotope Production. Diagnostic Radioisotopes and Monitor Reactions) also does not put "hr" for the units of production thick target yield. Therefore we propose to change the dimension of this quantity (SF8=DT) from TTT to TTY. The affected is summarized in the table in next page.

We also propose the following rule:

- 1) Because the production yield depends on irradiation time, the irradiation time should be coded in free text for production yield.
- 2) Compilers should not decide the quantity code and its unit codes based on the authors' notation because there is no consistency in their expression. It should be decided by the definition of the data given (with consultation of authors when the definition is not clear in the article). If authors give production yield, it should be coded by Bq/ μ A even if the authors use Bq/ μ A•hr.
- 3) Physical thick target yield is usually derived from integration of the excitation function of cross section. Therefore we should not use DERIV in SF9 when authors derived physical thick target yield from the experimental cross section measured in the work.

Physical thick target yields are coded as production thick target yield: D4083.005, D4109.003, 005, 007, 009, D4110.004, D4111.006-012 , where modifier DT should be replaced by PHY.

Thick target yields defined in EXFOR is summarized in Appendix.

Proposed correction of dimension (Unit family)

Unit (Dict.25) Code DPS/MUAHR GBQ/COUL KBQ/MUAHR MBQ/COUL MBQ/MUAHR MUCI/MUAHR CI/AHR/MEV MBQ/C/MEV GBQ/MUA MBQ/MUA MBQ/MUA MCI/MUA MUCI/MUA PART/MUAHR	Expansion decays per Sec/micro-Ampere-hour Giga-Becquerel/Coulomb kilo-Becquerel/micro-Ampere-hour Mega-Becquerel/Coulomb Mega-Becquerel/micro-Ampere-hour milli-Curie/micro-Ampere-hour Curie per Ampere-hour per MeV Mega-Becquerel/Coulomb/MeV Giga-Becquerel/micro-Ampere Mega-Becquerel/micro-Ampere milli-Curie/micro-Ampere milli-Curie/micro-Ampere particles/micro-Ampere-hour	Dim. TTT TTT TTT TTT TTT TTTE TTTE TTY TTY	Should be
Quantities (Dict.236) Code	Expansion	Dim.	Should be Unused.
,TTY/DA,,DT (CUM),TTY,,DT (M),TTY,,DT ,TTY,,DT ,TTY,,PHY CUM,TTY,,PHY CUM,TTY,,PHY CUM/UND,TTY,,DT IND,TTY,,DT IND/M+,TTY,,DT M+,TTY,,PHY M+,TTY,,PHY M+,UND,TTY,,DT M+,TTY,,DT UND,TTY,,DT UND,TTY,,DT	 (Diff.prod.thick/thin target yield) (Production thick/thin target yld(assum.cum. (Production thick/thin-target yld,(uncert. (Production thick/thin-target yield) (Physical thick/thin-target yield) (Cum.production thick-target yield (unsat.)) (Physical thick/thin-target yield, (Cumul.thick-target yield/unit time,undef. (Indep.production thick-target yld incl.isom. (Indep.thick-target yield per unit time incl.isom. (Thick-target yield/unit time incl.isom. (Thick-target yield per unit time incl.isom. (Thick-target yield per unit time, undef. (Thick-target yield per unit time incl.isom. (Thick-target yield per unit time incl.isom. (Thick-target yield per unit time, undef. (Thick-target yield per unit time, undef. (Product.thick/thin target yield excl.isom. (Thick-target yield per unit time, undef. (Prod.thick target yield) Per unit time, undef. 	TTDA TTT TTT TTT TTT TTT TTT TTT TTT TTT	Delete. TTY TTY TTY TTY TTY TTY TTY TTY TTY TT
,TTY/DE,,DT (CUM),TTY (M),TTY ,TTY ,TTY/DA CUM,TTY CUM/(M),TTY CUM/(M),TTY CUM/UND,TTY IND,TTY IND,TTY IND/M+,TTY IND/UND,TTY M+,TTY	 (Diff.production thick target yield d/dE) (Sat.thick/thin target yield(assumed cumul. (Thick-target yield (uncert.if isom.trans.) (Saturated thick/thin-target yield) (Diff.satur.thick target yield d/dA) (Saturated cumul.thick/thin target yield) (Cum.thick-target yield (uncert.isom.trans. (Cum.satur.thick-target yield,exclud.isom. (Cumulative thick-target yield, undefined (Independent thick-target yield,undefined (Independent thick-target yield,undefined (Thick-target yield, incl. isom. 	TTTE TTY TTY TTY TTY TTY TTY TTY TTY TTY	Delete.

M+/UND,TTY	(Thick target yield, incl. isom.trans., undef.	TTY
M-,TTY	(Thick-target yield, excluding isomeric	TTY
PAR,TTY	(Partial thick target yield)	TTY
PAR,TTY,G	(Partial thick target gamma yield)	TTY
PAR,TTY/DA	(Partial differential thick target yield	TTY
SEQ,TTY	(Thick target yield for specified reaction	TTY
UND,TTY	(Thick target yield, undefined reaction)	TTY

Appendix: Thick target yields

Definitions:

1. Thick target product yield

The number of produced nuclei by one incident particle (charge Z) is

$$\int_{0}^{E_{0}} \mathrm{d}E \,\sigma(E) \rho\left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)^{-1} \text{ [nuclei/incident particle]}$$

This is <u>thick target product yield</u>. The number of produced nuclei after irradiation by current I(t) for *t* is

$$\left[\frac{1}{Ze}\int_{0}^{t} \mathrm{d}t' I(t')\right] \cdot \int_{0}^{E_{0}} \mathrm{d}E \,\sigma(E) \rho\left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)^{-1}$$

If the current I(t) is constant unit current (I(t) = 1), we obtain number of produced nuclei after irradiation by unit current for time *t*

$$N_0(E_0,t) = \frac{t}{Ze} \int_0^{E_0} \mathrm{d}E \,\sigma(E) \rho\left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)^{-1}.$$

Then the number of produced nuclei by unit current per unit time is

$$n_0(E_0) \equiv \frac{\mathrm{d}N_0(E_0,t)}{\mathrm{d}t} = \frac{1}{Ze} \cdot \int_0^{E_0} \mathrm{d}E \,\sigma(E) \rho\left(\frac{\mathrm{d}E}{\mathrm{d}x}\right)^{-1} \tag{1}$$

This is also thick target product yield.

2. Physical thick target yield

The activity of thick target product yield

$$y(E_0) = \lambda n_0(E_0) \tag{2}$$

is defined as physical thick target yield (Y in IAEA-TECDOC-1211).

3. Production thick target yield

Considering decay of the produced nuclei, the number of living nuclei after irradiation by unit current $N(E_0,t)$ satisfies

$$\frac{\mathrm{d}N(E_0,t)}{\mathrm{d}t} = n_0(E_0) - \lambda N(E_0,t)$$

. The solution of this equation is

$$N_t(E_0) \equiv N(E_0, t) = n_0(E_0) \frac{1 - e^{-\lambda t}}{\lambda}$$
(3)

and its activity

$$A_t(E_0) = \lambda N_t(E_0). \tag{4}$$

is defined as <u>production thick target yield</u>. From this definition, production thick target yield depends on irradiation time.

Especially, the number of living nuclei after the unit time irradiation is

$$N_1(E_0) \equiv N(E_0, t=1) = n_0(E_0) \frac{1 - e^{-\lambda}}{\lambda}$$
(5)

and its activity is

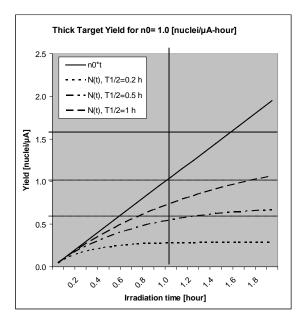
$$A_1(E_0) = \lambda N_1(E_0) \tag{6}$$

, which is defined as A_1 in IAEA-TECDOC-1211.

4. Saturation thick target yield

After infinite irradiation by unit current, the number of living nuclei is

$$N_{\infty}(E_0) \equiv N_{\infty}(E_0, t \to \infty) = \frac{n_0(E_0)}{\lambda}$$
⁽⁷⁾


Its activity

$$A_{\infty}(E_0) = \lambda N_{\infty}(E_0) \tag{8}$$

is defined as saturation thick target yield (A2 in IAEA-TECDOC-1211).

The relations between quantities defined in (1) - (8) are

$$A_{t}(E_{0}) = y(E_{0})\frac{1-e^{-\lambda t}}{\lambda} = A_{1}(E_{0})\frac{1-e^{-\lambda t}}{1-e^{-\lambda}} = A_{\infty}(E_{0})(1-e^{-\lambda t})$$
$$N_{t}(E_{0}) = n_{0}(E_{0})\frac{1-e^{-\lambda t}}{\lambda} = N_{1}(E_{0})\frac{1-e^{-\lambda t}}{1-e^{-\lambda}} = N_{\infty}(E_{0})(1-e^{-\lambda t})$$

Figure: Time dependence of living number of nuclei for four nuclides which $n_0(E_0)=1.0$ [nuclei/ μ A-h]) but half-lives are different $(T_{1/2}=0.2, 0.5, 1 \text{ [h]})$. Solid line gives $n_0(E_0)t$ (mumber of produced nuclei) in [nuclei/ μ A], and dotted, dash-dotted, dashed lines are $N_t(E_0)$ (number of living nuclei) in [nuclei/ μ A]. $N_1(E_0)$ (number of living nuclei) in [nuclei/ μ A] for $T_{1/2}=0.2, 0.5, 1$ [h] cases. $N_{\infty}(E_0)$ (number of living nuclei after 1 hour irradiation) is 0.28, 0.54, 0.74 [nuclei/ μ A] for $T_{1/2}=0.2, 0.5, 1$ [h] cases. $N_{\infty}(E_0)$ (number of living nuclei after infinite time irradiation) is 0.29, 0.72, 1.40 [nuclei/ μ A] for $T_{1/2}=0.2, 0.5, 1$ [h] cases. See Eqs. (2), (4), (5) and (6) for definitions of $n_0(E_0), N_t(E_0), N_1(E_0)$ and $N_{\infty}(E_0)$.

Units of thick target yield:

- Thick target product yield defined in Eq.(1) is given in [nuclei/incident particle].

If we set the unit current and time as 1 [μ A] and 1 [h], the decay constant is λ [h⁻¹]), and

Number of *produced* nuclei *per* 1 [h] per 1 [μ A]: $n_0(E_0)$ [nuclei / μ A-h]

Number of *living* nuclei *after* 1 [h] per 1 [μ A]:

 $N_1(E_0) = n_0(E_0) \frac{1 - e^{-\lambda}}{\lambda} \text{ [nuclei/\muA]}$

Number of *living* nuclei after infinite time per 1 [μ A]: $N_{\infty}(E_0) = \frac{n_0(E_0)}{\lambda}$ [nuclei/ μ A]

Multiplication of λ [h⁻¹]/3600 [s/h] (convert [decays/h] to [decays/s] = [Bq]) leads to

$$y(E_{0}) = \frac{\lambda}{3600} n_{0}(E_{0}) [Bq/\mu A-h]$$

$$A_{1}(E_{0}) = \frac{\lambda}{3600} N_{1}(E_{0}) = n_{0}(E_{0}) \frac{1-e^{-\lambda}}{3600} = \frac{1-e^{-\lambda}}{\lambda} y(E_{0}) [Bq/\mu A]$$

$$A_{\infty}(E_{0}) = \frac{\lambda}{3600} N_{\infty}(E_{0}) = \frac{n_{0}(E_{0})}{3600} = \frac{y(E_{0})}{\lambda} [Bq/\mu A]$$

Example: 124 **Te(p,2n)** 123 **I T**_{1/2}=**13.23 [h] at 30 MeV (Table 5.1.8b of TECDOC-1211 p191):** $y = 289 [GBq/C] = 1040 [MBq/ \mu A-h] (1 [\mu A-h] = 3600 [C]). \lambda = ln2/T_{1/2} = 0.05239 [h⁻¹]. This leads to$

Production thick target activity after 1 hour irradiation:

 $A_1 = [1 - \exp(-0.05239)]/0.05239 \times 1040 = 1013 \text{ [MBq/}\mu\text{A]}$

Saturated thick target activity: $A_{\infty}=1040/0.05239=19851[MBq/\mu A] = 19.9 [GBq/\mu A]$

Distribution:

blokhin@ippe.ru chiba@earth.sgu.ac.jp claes.nordborg@oecd.org emmeric.dupont@oecd.org ganesan@barc.gov.in gezg@ciae.ac.cn hasegawa@nea.fr henriksson@near.fr hongwei@ciae.ac.cn jhchang@kaeri.re.kr j.roberts@iaea.org kaltchenko@kinr.kiev.ua katakura.junichi@jaea.go.jp kato@nucl.sci.hokudai.ac.jp kirarlyb@atomki.hu l.vrapcenjak@iaea.org manuel.bossant@oecd.org manokhin@ippe.ru mmarina@ippe.ru mwherman@bnl.gov nicolas.soppera@oecd.org

nklimova@kinr.kiev.ua n.otsuka@iaea.org nrdc@jcprg.org oblozinsky@bnl.gov ogritzay@kinr.kiev.ua otto.schwerer@aon.at r.forrest@iaea.org samaev@obninsk.ru s.babykina@polyn.kiae.su scyang@kaeri.re.kr s.dunaeva@iaea.org stakacs@atomki.hu stanislav.hlavac@savba.sk taova@expd.vniief.ru tarkanyi@atomki.hu varlamov@depni.sinp.msu.ru vlasov@kinr.kiev.ua vmclane@optonline.net v.pronyaev@iaea.org v.zerkin@iaea.org yolee@kaeri.re.kr