Memo CP-D/118 29 December 1983 To: Distribution From: H.D. Lemmel Subject: CPND compilation by RIKEN Please find attached a list of product nuclei for which cross-sections and thick-target yields will be compiled in EXFOR by RIKEN. The list includes some product nuclei which are important as impurities when producing other nuclides. Your co-operation will be appreciated - by sending to RIKEN any materials you may encounter within their scope; - by informing RIKEN of any related data that you may have compiled but not yet transmitted, in order to avoid duplication of compilation. (The Exfor data transmitted are available at RIKEN.) I wish to apologize for the delay in the Actions and Minutes of the Moscow data center meeting. Best wishes for the New Year! Clearance: J.J. Schmid ## Distribution: 1. S. Pearlstein, NNDC 2. N. Tubbs, NEA-DB 4. V.N. Manokhin, CJD A. F.E. Chukreev, CAJaD M. B.S. Ishkhanov, CDFE E. H. Tanaka, Study Group A. Hashizume, R!KEN NDS: D.E. Cullen D. Gandarias Cruz M. Lammer H.D. Lemmel K. Okamoto M. Okumu V. Pronyaev J.J. Schmidt O. Schwerer M. Seits 3 spare copies ## RIKAGAKU KENKYUSHO (THE INSTITUTE OF PHYSICAL AND CHEMICAL RESEARCH) WAKO-SHI, SAITAMA, 351. JAPAN Dr. A. Hashiqume RIKEN will compile for the first step the experimental information available on cross-sections and thick target yields for the production of the following isotopes, | 1 | ¹¹ c(20.4m), | 2 | ¹³ N(9.96m), | |----|--|----|---| | 3 | ¹⁵ 0(122s), | 4 | ¹⁸ F(110m), | | 5 | 28 _{Mg} (21.0h), | 6 | ⁵² Fe(8.27h) (^{52m} Mn(21.lm), | | 7 | 67 _{Ga(78.3h)} , | 8 | 68 _{Ge} (288d) (⁶⁸ Ga(68.lm)), | | 9 | ⁷⁴ As(17.8d), | 10 | 77 _{Br(57.0h)} , | | 11 | 82Br(35.3h), | 12 | 77 _{Kr(74.7m)} , | | 13 | 81 _{Rb} (4.58h) (^{81m} Kr(13s)) | 14 | 82m _{Rb} (6.2h), | | 15 | lll In(2.83d), | 16 | 123 _{Xe} (2.08h), | | 17 | 127 _{Xe(36.4d)} , | 18 | ¹²³ I(13.0h), | | 19 | 12 ⁴ I(4,2d). | 20 | ¹²⁵ I(60.2d). |