LEXFOR (proposed in addition to MEMO CP-C/254)

Resonance Strength

The resonance strength is defined as

$$\omega \Gamma = \frac{2J+1}{(2j_i+1)(2j_i+1)} \frac{\Gamma_i \Gamma_r}{\Gamma}$$

Where

J = spin of resonance $j_i = \text{spin of incident projectile}$ $j_t = \text{spin of target}$ $\Gamma_i = \text{partial width for formation of resonance by incident particle i,}$ $\Gamma_r = \text{partial width for decay of resonance by reaction channel r,}$ $\Gamma = \text{total width of resonance}$

Resonance strengths are determined experimentally by measuring the area under the resonant yield curve:

$$\omega \Gamma = \frac{2\varepsilon}{\lambda_R} \frac{A_t}{A_t + A_i} Y_r$$

where λ_R = particle wavelength at the resonance energy

 Y_r = stopping power

Partial resonance width applies when reaction channel "r" is the transition on specific energy level, for example by γ -decay.

EXFOR coding

Units:	energy, e.g. EV or MILLI-EV
REACTION	(Z-S-A(N,G),PAR,WID/STR)
REACTION	(Z-S-A(N,EL),,WID/STR)

LEXFOR (proposed)

SAMPLE

......previous text.....

Example

BIB REACTION (Z-S-A(N,TOT),,SIG/TMP) or REACTION (Z-S-A(N,F), PRE, DA/TEM, , LEG/RS) ENDBIB COMMON 1 TEMP Κ 0.6 ENDCOMMON 3 DATA DATA ERR-T EN