ENTRY C2103 20140404 C142C210300000001 SUBENT C2103001 20140404 C142C210300100001 BIB 6 7 C210300100002 TITLE "Magic" Energies For Detecting Light Elements With C210300100003 Resonant Alpha Particle Backscattering C210300100004 AUTHOR (C.J.Wetteland,C.J.Maggiore,J.R.Tesmer,X-M.He,D-H.Lee) C210300100005 REFERENCE (R,LA-UR-98-4867,1998) C210300100006 INSTITUTE (1USALAS) C210300100007 FACILITY (VDG,1USALAS) C210300100008 HISTORY (20140404C) BP C210300100009 ENDBIB 7 0 C210300100010 NOCOMMON 0 0 C210300100011 ENDSUBENT 10 0 C210300199999 SUBENT C2103002 20140404 C142C210300200001 BIB 6 21 C210300200002 REACTION (1-H-1(A,EL)1-H-1,,DA,,RTH) C210300200003 SAMPLE A polystyrene layer 8000 A thick spun onto a silicon C210300200004 substrate was used for the hydrogen elastic recoil C210300200005 cross section measurement. C210300200006 METHOD The hydrogen recoil cross sections were measured at C210300200007 scattering angle of 30 degrees with a target tilt of C210300200008 75 degrees. The cross section in the energy region of C210300200009 interest was obtained by first measuring the yield C210300200010 from the sample at 2.5 MeV, where the cross section C210300200011 is known. At both high and low energies the target C210300200012 was thin enough that the yield could be determined by C210300200013 peak integration. This removes the uncertainties C210300200014 associated with stopping cross sections. The yield C210300200015 obtained in the region of 5-6 MeV was then scaled by C210300200016 the 2.5 MeV cross section to determine the cross C210300200017 section. C210300200018 ERR-ANALYS (ERR-S) The uncertainty in the elastic recoil ratios C210300200019 is 6%. C210300200020 CORRECTION The hydrogen cross section was corrected for hydrogen C210300200021 loss. C210300200022 STATUS (CURVE) Fig. 1. C210300200023 ENDBIB 21 0 C210300200024 COMMON 2 3 C210300200025 ANG ERR-S C210300200026 ADEG PER-CENT C210300200027 30.0 6.0 C210300200028 ENDCOMMON 3 0 C210300200029 DATA 2 13 C210300200030 EN DATA C210300200031 KEV NO-DIM C210300200032 5037.951 15.306 C210300200033 5140.417 17.143 C210300200034 5216.318 17.959 C210300200035 5292.220 17.959 C210300200036 5368.121 19.184 C210300200037 5442.124 19.796 C210300200038 5518.026 21.020 C210300200039 5593.927 22.041 C210300200040 5667.930 23.061 C210300200041 5743.832 24.490 C210300200042 5817.835 24.694 C210300200043 5891.839 26.327 C210300200044 5967.740 27.347 C210300200045 ENDDATA 15 0 C210300200046 ENDSUBENT 45 0 C210300299999 SUBENT C2103003 20140404 C142C210300300001 BIB 5 21 C210300300002 REACTION (5-B-11(A,EL)5-B-11,,DA,,RTH) C210300300003 SAMPLE The boron sample was deposited on a 5 mm thick carbon C210300300004 substrate. The boron in the sample was separated from C210300300005 the substrate by a 4000 A layer of Mo. This separates, C210300300006 in energy, the boron signal from the carbon C210300300007 substrate signal. The boron layer was a C210300300008 sputter-coated layer of B4C, 500 A thick. C210300300009 METHOD A standard procedure for measuring backscattering C210300300010 cross sections is the ratio method. The ratio method C210300300011 can be derived from the equation for the experimental C210300300012 cross section for a given element sigma = Y / Q(Nt) C210300300013 deltaOmega, where sigma is the cross section, Y is the C210300300014 integrated yield, Q is the number of incident C210300300015 particles, (Nt) is the atoms/cm2 in the target and C210300300016 deltaOmega is the solid angle of the detector. While C210300300017 Y can be measured to arbitrarily good statistical C210300300018 uncertainty, the other parameters have higher C210300300019 systematic uncertainties. C210300300020 ERR-ANALYS (ERR-S) The statistical uncertainties in the C210300300021 backscattering ratio measurements are 4%. C210300300022 STATUS (CURVE) Fig. 1. C210300300023 ENDBIB 21 0 C210300300024 COMMON 2 3 C210300300025 ANG ERR-S C210300300026 ADEG PER-CENT C210300300027 167.0 4.0 C210300300028 ENDCOMMON 3 0 C210300300029 DATA 2 37 C210300300030 EN DATA C210300300031 KEV NO-DIM C210300300032 5041.728 3.448 C210300300033 5100.522 8.958 C210300300034 5161.218 13.785 C210300300035 5221.917 17.928 C210300300036 5280.751 15.917 C210300300037 5341.519 7.071 C210300300038 5402.171 20.102 C210300300039 5462.867 24.930 C210300300040 5523.580 26.338 C210300300041 5553.894 35.247 C210300300042 5569.053 39.359 C210300300043 5584.179 49.624 C210300300044 5586.055 53.728 C210300300045 5591.683 66.037 C210300300046 5593.634 55.784 C210300300047 5599.280 64.675 C210300300048 5601.149 70.146 C210300300049 5614.456 65.369 C210300300050 5627.775 58.542 C210300300051 5629.644 64.012 C210300300052 5642.984 53.083 C210300300053 5643.009 48.297 C210300300054 5658.244 38.053 C210300300055 5658.265 33.951 C210300300056 5673.435 36.012 C210300300057 5673.460 31.227 C210300300058 5703.853 25.094 C210300300059 5705.732 28.514 C210300300060 5734.242 19.646 C210300300061 5764.595 21.034 C210300300062 5794.945 23.106 C210300300063 5823.397 25.176 C210300300064 5853.714 33.401 C210300300065 5884.010 45.727 C210300300066 5914.316 56.003 C210300300067 5942.721 66.961 C210300300068 5988.298 60.156 C210300300069 ENDDATA 39 0 C210300300070 ENDSUBENT 69 0 C210300399999 SUBENT C2103004 20140404 C142C210300400001 BIB 6 20 C210300400002 REACTION (6-C-0(A,EL)6-C-0,,DA,,RTH) C210300400003 SAMPLE The carbon sample was deposited on a 5 mm thick C210300400004 carbon substrate. For carbon an evaporated 800 A C210300400005 layer of Au was used followed by a plasma-coated 400 C210300400006 A layer of carbon. C210300400007 METHOD A standard procedure for measuring backscattering C210300400008 cross sections is the ratio method. The ratio method C210300400009 can be derived from the equation for the experimental C210300400010 cross section for a given element sigma = Y / Q(Nt) C210300400011 deltaOmega, where sigma is the cross section, Y is the C210300400012 integrated yield, Q is the number of incident C210300400013 particles, (Nt) is the atoms/cm2 in the target and C210300400014 deltaOmega is the solid angle of the detector. While C210300400015 Y can be measured to arbitrarily good statistical C210300400016 uncertainty, the other parameters have higher C210300400017 systematic uncertainties. C210300400018 CORRECTION The carbon cross section was corrected for carbon gain.C210300400019 ERR-ANALYS (ERR-S) The statistical uncertainties in the C210300400020 backscattering ratio measurements are 4%. C210300400021 STATUS (CURVE) Fig. 1. C210300400022 ENDBIB 20 0 C210300400023 COMMON 2 3 C210300400024 ANG ERR-S C210300400025 ADEG PER-CENT C210300400026 167.0 4.0 C210300400027 ENDCOMMON 3 0 C210300400028 DATA 2 23 C210300400029 EN DATA C210300400030 KEV NO-DIM C210300400031 5051.331 33.572 C210300400032 5079.848 37.143 C210300400033 5110.266 38.572 C210300400034 5140.684 40.000 C210300400035 5216.730 47.142 C210300400036 5292.776 57.140 C210300400037 5366.920 64.996 C210300400038 5442.966 75.709 C210300400039 5519.011 77.851 C210300400040 5577.947 89.992 C210300400041 5638.783 97.848 C210300400042 5669.202 98.562 C210300400043 5699.620 106.418 C210300400044 5730.038 104.275 C210300400045 5760.456 107.846 C210300400046 5790.875 87.850 C210300400047 5817.490 42.143 C210300400048 5847.909 24.288 C210300400049 5878.327 40.000 C210300400050 5908.745 45.713 C210300400051 5937.262 47.856 C210300400052 5967.681 50.713 C210300400053 5998.099 57.140 C210300400054 ENDDATA 25 0 C210300400055 ENDSUBENT 54 0 C210300499999 SUBENT C2103005 20140404 C142C210300500001 BIB 5 21 C210300500002 REACTION (7-N-0(A,EL)7-N-0,,DA,,RTH) C210300500003 SAMPLE The same target was used for both the oxygen and C210300500004 nitrogen measurements. A 2000 A layer of ZrN2/ZrO2 C210300500005 was applied to the carbon substrate. An intermediate C210300500006 layer was not needed because the oxygen and nitrogen C210300500007 signals are naturally separated from the substrate C210300500008 signal. C210300500009 METHOD A standard procedure for measuring backscattering C210300500010 cross sections is the ratio method. The ratio method C210300500011 can be derived from the equation for the experimental C210300500012 cross section for a given element sigma = Y / Q(Nt) C210300500013 deltaOmega, where sigma is the cross section, Y is the C210300500014 integrated yield, Q is the number of incident C210300500015 particles, (Nt) is the atoms/cm2 in the target and C210300500016 deltaOmega is the solid angle of the detector. While C210300500017 Y can be measured to arbitrarily good statistical C210300500018 uncertainty, the other parameters have higher C210300500019 systematic uncertainties. C210300500020 ERR-ANALYS (ERR-S) The statistical uncertainties in the C210300500021 backscattering ratio measurements are 4%. C210300500022 STATUS (CURVE) Fig. 1. C210300500023 ENDBIB 21 0 C210300500024 COMMON 2 3 C210300500025 ANG ERR-S C210300500026 ADEG PER-CENT C210300500027 167.0 4.0 C210300500028 ENDCOMMON 3 0 C210300500029 DATA 2 23 C210300500030 EN DATA C210300500031 KEV NO-DIM C210300500032 5089.184 9.526 C210300500033 5119.545 11.000 C210300500034 5149.905 11.526 C210300500035 5180.266 8.684 C210300500036 5208.729 6.684 C210300500037 5239.089 5.526 C210300500038 5269.450 4.895 C210300500039 5299.810 5.316 C210300500040 5330.171 4.789 C210300500041 5360.531 4.158 C210300500042 5388.994 4.263 C210300500043 5449.715 4.474 C210300500044 5525.617 5.421 C210300500045 5586.338 6.053 C210300500046 5647.059 7.105 C210300500047 5705.882 15.105 C210300500048 5766.603 12.052 C210300500049 5825.427 14.052 C210300500050 5855.787 16.263 C210300500051 5886.148 11.736 C210300500052 5914.611 12.789 C210300500053 5944.972 14.999 C210300500054 5975.332 16.052 C210300500055 ENDDATA 25 0 C210300500056 ENDSUBENT 55 0 C210300599999 SUBENT C2103006 20140404 C142C210300600001 BIB 5 21 C210300600002 REACTION (8-O-0(A,EL)8-O-0,,DA,,RTH) C210300600003 SAMPLE The same target was used for both the oxygen and C210300600004 nitrogen measurements. A 2000 A layer of ZrN2/ZrO2 C210300600005 was applied to the carbon substrate. An intermediate C210300600006 layer was not needed because the oxygen and nitrogen C210300600007 signals are naturally separated from the substrate C210300600008 signal. C210300600009 METHOD A standard procedure for measuring backscattering C210300600010 cross sections is the ratio method. The ratio method C210300600011 can be derived from the equation for the experimental C210300600012 cross section for a given element sigma = Y / Q(Nt) C210300600013 deltaOmega, where sigma is the cross section, Y is the C210300600014 integrated yield, Q is the number of incident C210300600015 particles, (Nt) is the atoms/cm2 in the target and C210300600016 deltaOmega is the solid angle of the detector. While C210300600017 Y can be measured to arbitrarily good statistical C210300600018 uncertainty, the other parameters have higher C210300600019 systematic uncertainties. C210300600020 ERR-ANALYS (ERR-S) The statistical uncertainties in the C210300600021 backscattering ratio measurements are 4%. C210300600022 STATUS (CURVE) Fig. 1. C210300600023 ENDBIB 21 0 C210300600024 COMMON 2 3 C210300600025 ANG ERR-S C210300600026 ADEG PER-CENT C210300600027 167.0 4.0 C210300600028 ENDCOMMON 3 0 C210300600029 DATA 2 19 C210300600030 EN DATA C210300600031 KEV NO-DIM C210300600032 5210.227 7.802 C210300600033 5240.530 7.142 C210300600034 5270.833 7.802 C210300600035 5301.136 8.461 C210300600036 5331.439 7.966 C210300600037 5361.742 9.120 C210300600038 5392.045 21.644 C210300600039 5450.758 5.989 C210300600040 5524.621 9.120 C210300600041 5585.227 8.131 C210300600042 5645.833 7.802 C210300600043 5706.439 7.802 C210300600044 5765.152 8.461 C210300600045 5825.758 8.790 C210300600046 5856.061 8.790 C210300600047 5884.470 7.802 C210300600048 5914.773 6.813 C210300600049 5943.182 2.858 C210300600050 5975.379 10.109 C210300600051 ENDDATA 21 0 C210300600052 ENDSUBENT 51 0 C210300699999 SUBENT C2103007 20140404 C142C210300700001 BIB 6 23 C210300700002 REACTION 1(1-H-1(A,EL)1-H-1,,DA,,RTH) C210300700003 2(1-H-1(A,EL)1-H-1,,DA) C210300700004 SAMPLE A polystyrene layer 8000 A thick spun onto a silicon C210300700005 substrate was used for the hydrogen elastic recoil C210300700006 cross section measurement. C210300700007 METHOD The hydrogen recoil cross sections were measured at C210300700008 scattering angle of 30 degrees with a target tilt of C210300700009 75 degrees. The cross section in the energy region of C210300700010 interest was obtained by first measuring the yield C210300700011 from the sample at 2.5 MeV, where the cross section C210300700012 is known. At both high and low energies the target C210300700013 was thin enough that the yield could be determined by C210300700014 peak integration. This removes the uncertainties C210300700015 associated with stopping cross sections. The yield C210300700016 obtained in the region of 5-6 MeV was then scaled by C210300700017 the 2.5 MeV cross section to determine the cross C210300700018 section. C210300700019 ANALYSIS Choosing the analysis energy in this region depends C210300700020 on the elements expected in the sample. C210300700021 CORRECTION The hydrogen cross section was corrected for hydrogen C210300700022 loss. C210300700023 STATUS (TABLE) Table 1. C210300700024 (DEP,C2103002) C210300700025 ENDBIB 23 0 C210300700026 COMMON 2 3 C210300700027 ANG EN C210300700028 ADEG MEV C210300700029 30.0 5.625 C210300700030 ENDCOMMON 3 0 C210300700031 DATA 2 1 C210300700032 DATA 1DATA 2 C210300700033 NO-DIM MB/SR C210300700034 21.1 538.0 C210300700035 ENDDATA 3 0 C210300700036 ENDSUBENT 35 0 C210300799999 SUBENT C2103008 20140404 C142C210300800001 BIB 5 27 C210300800002 REACTION 1(5-B-11(A,EL)5-B-11,,DA,,RTH) C210300800003 2(5-B-11(A,EL)5-B-11,,DA) C210300800004 SAMPLE The boron sample was deposited on a 5 mm thick carbon C210300800005 substrate. The boron in the sample was separated from C210300800006 the substrate by a 4000 A layer of Mo. This separates, C210300800007 in energy, the boron signal from the carbon C210300800008 substrate signal. The boron layer was a C210300800009 sputter-coated layer of B4C, 500 A thick. C210300800010 METHOD A standard procedure for measuring backscattering C210300800011 cross sections is the ratio method. The ratio method C210300800012 can be derived from the equation for the experimental C210300800013 cross section for a given element sigma = Y / Q(Nt) C210300800014 deltaOmega, where sigma is the cross section, Y is the C210300800015 integrated yield, Q is the number of incident C210300800016 particles, (Nt) is the atoms/cm2 in the target and C210300800017 deltaOmega is the solid angle of the detector. While C210300800018 Y can be measured to arbitrarily good statistical C210300800019 uncertainty, the other parameters have higher C210300800020 systematic uncertainties. C210300800021 ANALYSIS Choosing the analysis energy in this region depends C210300800022 on the elements expected in the sample. If boron is C210300800023 present in a relatively thin film, the best energy is C210300800024 = 5.625 MeV. At this energy silicon has relatively C210300800025 few resonances in the region of the light element C210300800026 signals and can be used as a substrate material. C210300800027 STATUS (TABLE) Table 1. C210300800028 (DEP,C2103003) C210300800029 ENDBIB 27 0 C210300800030 COMMON 2 3 C210300800031 ANG EN C210300800032 ADEG MEV C210300800033 167.0 5.625 C210300800034 ENDCOMMON 3 0 C210300800035 DATA 2 1 C210300800036 DATA 1DATA 2 C210300800037 NO-DIM MB/SR C210300800038 65.2 209.0 C210300800039 ENDDATA 3 0 C210300800040 ENDSUBENT 39 0 C210300899999 SUBENT C2103009 20140404 C142C210300900001 BIB 6 20 C210300900002 REACTION 1(6-C-0(A,EL)6-C-0,,DA,,RTH) C210300900003 2(6-C-0(A,EL)6-C-0,,DA) C210300900004 SAMPLE The carbon sample was deposited on a 5 mm thick carbon C210300900005 substrate. C210300900006 METHOD A standard procedure for measuring backscattering C210300900007 cross sections is the ratio method. The ratio method C210300900008 can be derived from the equation for the experimental C210300900009 cross section for a given element sigma = Y / Q(Nt) C210300900010 deltaOmega, where sigma is the cross section, Y is the C210300900011 integrated yield, Q is the number of incident C210300900012 particles, (Nt) is the atoms/cm2 in the target and C210300900013 deltaOmega is the solid angle of the detector. While C210300900014 Y can be measured to arbitrarily good statistical C210300900015 uncertainty, the other parameters have higher C210300900016 systematic uncertainties. C210300900017 ANALYSIS Choosing the analysis energy in this region depends C210300900018 on the elements expected in the sample. C210300900019 CORRECTION The carbon cross section was corrected for carbon gain.C210300900020 STATUS (TABLE) Table 1. C210300900021 (DEP,C2103004) C210300900022 ENDBIB 20 0 C210300900023 COMMON 2 3 C210300900024 ANG EN C210300900025 ADEG MEV C210300900026 167.0 5.625 C210300900027 ENDCOMMON 3 0 C210300900028 DATA 2 1 C210300900029 DATA 1DATA 2 C210300900030 NO-DIM MB/SR C210300900031 97.6 468.0 C210300900032 ENDDATA 3 0 C210300900033 ENDSUBENT 32 0 C210300999999 SUBENT C2103010 20140404 C142C210301000001 BIB 5 23 C210301000002 REACTION 1(7-N-0(A,EL)7-N-0,,DA,,RTH) C210301000003 2(7-N-0(A,EL)7-N-0,,DA) C210301000004 SAMPLE The same target was used for both the oxygen and C210301000005 nitrogen measurements. A 2000 A layer of ZrN2/ZrO2 C210301000006 was applied to the carbon substrate. An intermediate C210301000007 layer was not needed because the oxygen and nitrogen C210301000008 signals are naturally separated from the substrate C210301000009 signal. C210301000010 METHOD A standard procedure for measuring backscattering C210301000011 cross sections is the ratio method. The ratio method C210301000012 can be derived from the equation for the experimental C210301000013 cross section for a given element sigma = Y / Q(Nt) C210301000014 deltaOmega, where sigma is the cross section, Y is the C210301000015 integrated yield, Q is the number of incident C210301000016 particles, (Nt) is the atoms/cm2 in the target and C210301000017 deltaOmega is the solid angle of the detector. While C210301000018 Y can be measured to arbitrarily good statistical C210301000019 uncertainty, the other parameters have higher C210301000020 systematic uncertainties. C210301000021 ANALYSIS Choosing the analysis energy in this region depends C210301000022 on the elements expected in the sample. C210301000023 STATUS (TABLE) Table 1. C210301000024 (DEP,C2103005) C210301000025 ENDBIB 23 0 C210301000026 COMMON 2 3 C210301000027 ANG EN C210301000028 ADEG MEV C210301000029 167.0 5.625 C210301000030 ENDCOMMON 3 0 C210301000031 DATA 2 1 C210301000032 DATA 1DATA 2 C210301000033 NO-DIM MB/SR C210301000034 6.25 44.0 C210301000035 ENDDATA 3 0 C210301000036 ENDSUBENT 35 0 C210301099999 SUBENT C2103011 20140404 C142C210301100001 BIB 5 23 C210301100002 REACTION 1(8-O-0(A,EL)8-O-0,,DA,,RTH) C210301100003 2(8-O-0(A,EL)8-O-0,,DA) C210301100004 SAMPLE The same target was used for both the oxygen and C210301100005 nitrogen measurements. A 2000 A layer of ZrN2/ZrO2 C210301100006 was applied to the carbon substrate. An intermediate C210301100007 layer was not needed because the oxygen and nitrogen C210301100008 signals are naturally separated from the substrate C210301100009 signal. C210301100010 METHOD A standard procedure for measuring backscattering C210301100011 cross sections is the ratio method. The ratio method C210301100012 can be derived from the equation for the experimental C210301100013 cross section for a given element sigma = Y / Q(Nt) C210301100014 deltaOmega, where sigma is the cross section, Y is the C210301100015 integrated yield, Q is the number of incident C210301100016 particles, (Nt) is the atoms/cm2 in the target and C210301100017 deltaOmega is the solid angle of the detector. While C210301100018 Y can be measured to arbitrarily good statistical C210301100019 uncertainty, the other parameters have higher C210301100020 systematic uncertainties. C210301100021 ANALYSIS Choosing the analysis energy in this region depends C210301100022 on the elements expected in the sample. C210301100023 STATUS (TABLE) Table 1. C210301100024 (DEP,C2103006) C210301100025 ENDBIB 23 0 C210301100026 COMMON 2 3 C210301100027 ANG EN C210301100028 ADEG MEV C210301100029 167.0 5.625 C210301100030 ENDCOMMON 3 0 C210301100031 DATA 2 1 C210301100032 DATA 1DATA 2 C210301100033 NO-DIM MB/SR C210301100034 8.40 81.0 C210301100035 ENDDATA 3 0 C210301100036 ENDSUBENT 35 0 C210301199999 ENDENTRY 11 0 C210399999999