Activities for Nuclear Data Measurements in Korea

Sapporo Nuclear Data Workshop Oct. 25- 29, 2010 Hokkaido University, Sapporo

Guinyun Kim

Kyungpook National University

G. N. Kim^{1,*}, M. W. Lee¹, K. S. Kim¹, K. Kim¹, S. C. Yang¹, T. I. Ro², Y. R. Kang², H. S. Kang³, H.S. Lee³, M. H. Cho³, I. S. Ko³, and W. Namkung³

¹Department of Physics, Kyungpook National University, Daegu 702-701, Korea ²Department of Physics, Dong-A University, Busan 604-714, Korea ³Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 790-784, Korea *email:gnkim@knu.ac.kr

We report the activities by using the pulsed neutron facility in Pohang Accelerator Laboratory, which consists of an electron linear accelerator, a water-cooled Ta target with a water moderator, and a 12 m time-of-flight path. It can be possible to measure the neutron total cross-sections in the neutron energy range from 0.01 eV to few hundreds eV by using the neutron time-of-flight method. A ⁶LiZnS(Ag) glass scintillator was used as a neutron detector. We measured neutron total cross-sections for various samples with the time-of-flight method. We also report the nuclear data production experiments by using the activation methods with neutron and bremsstrahlung beams from the electron linac. We also report the measurements of various radioisotopes from the charged particle induced reactions at MC50 cyclotron of the Korea Institute of Radiological and Medical Sciences.

HES

Activities for Nuclear Data Measurements

Activities on Nuclear Data Measurements in Korea

- Neutron Total Cross-section measurements at PAL
- Photo-nuclear reactions with Bremsstrahlung beam
- Proton-induced reaction cross-section measurements at KIRAM

Activities on Nuclear Data Measurements in Abroad

- keV-neutron capture cross-sections at Titech
- Proton-induced reaction cross-section measurement at CYRIC (Tohoku Univ.)
- Neutron capture cross-section measurements at RPI, USA

Other Collaborating Institute

- FLNP, Russia
- BARC, India
- VAST, Viet Nam
- CIAE, China

Activities on Nuclear Data Measurement in Korea

- Neutron Total Cross-section measurements at PAL
- Photo-nuclear reactions with Bremsstrahlung beam at PAL
- Charged ion-induced nuclear reactions at KIRAM

HER Experimental Facility at Pohang Accelerator Laboratory

Pohang High Energy Radiation Facility with 2.5 GeV e-linac

- 1. Neutron Total Cross-section measurements by neutron TOF method
- 2. Measurement of Thermal Neutron Cross-sections and Resonance Integrals by Neutron Activation Method

1. Neutron Total Cross-section measurements by neutron TOF method

HE2

Pohang Pulsed Neutron Facility (PNF)

Electron accelerator based Time of Flight system

- \checkmark electron energy = 50 ~ 70 MeV
- \checkmark repetition rate = Below 30Hz
- \checkmark pulse width = 1 ~ 2 µs
- \checkmark peak beam current = 30 ~ 60 mA
- ✓ TOF flight length = 11.5~12m

Target + water moderator : to produce neutron pulse ✓ Ta plates + cooling system

1. Neutron Energy E in eV corresponding to channel I in TOF $E[eV] = \left(\frac{72.3 \times L[m]}{(I - I_0) \times W[\mu s]}\right)^2 \qquad L: \text{ flight path length} W: \text{ channel width}$ 2. Experimental Set up $\xrightarrow{\bullet} \Phi$ Φ_{c} Neutron Sample Detector 3. Neutron Transmission rate $T(E_{i}) = \frac{[In(E_{i}) - In^{B}(E_{i})]/M_{In}}{[Out(E_{i}) - Out^{B}(E_{i})]/M_{O}}$ $\sigma(E_i) = -\frac{1}{N} \ln T(E_i)$ N: atomic density 4. Total Cross Section **5. Total Cross Section after Purity Correction** σ : measured total cross section $\sigma - M_T \cdot \sum P_j \sigma_j M_j^{-1} \times 10^{-6}$ M_T : total weight of sample $\sigma_T = \frac{\overline{j}}{1 - \sum_i P_j \times 10^{-6}}$ *M_i*: weight of impurity sample P_i : impurity in ppm

Nuclear Instruments and Methods in Physics Research B 267 (2009) 2351-2356

Measurement of neutron total cross-section and resonance parameters of xenon

V.R. Skoy^{a,b}, T.F. Wang^a, G.N. Kim^{a,*}, Y.D. Oh^c, M.H. Cho^c, I.S. Ko^c, W. Namkung^c

^a Department of Physics, Kyungpook National University, Daegu 702-701, Republic of Korea

^b Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Moscow Region, Russia

^c Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea

Measurement of the total neutron cross-section and resonance parameters of niobium at the Pohang pulsed neutron facility

Measurements of neutron total cross-sections and resonance parameters of **erbium** at the Pohang Neutron Facility

2. Measurement of Thermal Neutron Cross-sections and Resonance

Integrals by Neutron Activation Method

Foil	Size (mm)	Weight (g)	Thickness (mm)	Purity (%)
Au 11	18×18	0.1863 ± 0.0005	0.03	99.95
Au 12	18×18	$0.1885 {\pm} 0.0005$	0.03	99.95
W 1	18×18	1.2636 ± 0.0008	0.2	99.95
W 2	18×18	1.2891 ± 0.0008	0.2	99.95
In 1	18×18	0.1276 ± 0.0004	0.05	99.99
In 2	18×18	0.1217 ± 0.0004	0.05	99.99
In 3	18×18	0.1214 ± 0.0004	0.05	99.99
In 4	18×18	0.1220 ± 0.0004	0.05	99.99
In 5	18×18	0.1271 ± 0.0004	0.05	99.99
In 6	18×18	0.1245 ± 0.0004	0.05	99.99

Data Analysis

Reaction	Main resonance	Half-life	e Main γ- rays Energy [keV] Intensity [%]		Isotopic abundance [%]
	energy [eV]				
$^{186}W(n,\gamma)^{187}W$	18.8	23.72 h (6)	479.550 (22)*	21.8 (7)	28.6 (2)
			551.52 (4)	5.08 (17)	
			618.26(4)	6.28 (21)	
			685.73 (4)*	27.3 (9)	
¹⁹⁷ Au(n, γ) ¹⁹⁸ Au	4.9	2.69517 d (21)	411.80205 (17)	* 95.58	100
			675.8836 (7)	0.084 (3)	

* Gamma rays used in calculations

Thermal Neutron Cross-sections of the $^{179}{Hf}(n,\gamma)^{180m}Hf$ and $^{180}{Hf}(n,\gamma)^{181}Hf~reactions$

EVALUATE: Resonance Integrals of the 179 Hf(n, γ) 180m Hf and 180 Hf(n, γ) 181 Hf reactions

Year

Photo-nuclear reactions with Bremsstrahlung beam at PAL

- **1. Isomeric Yield Ratio Measurement**
- 2. Photo-fission Reaction (See Naik's talk)

Experimental Arrangement

- Electron energy : 2.5 GeV
- Beam current : 2.19×10^{14} electron
- Repetition rate : 10 Hz
- Pulse width : 1.0 nsec

Sample	Purity (%)	Diameter (inch)	Thickness (inch)
Sc	99.81	0.5	0.005
Ti	99.63	0.5	0.004
Fe	99.559	0.5	0.005
Cu	99.96	0.5	0.004

Methodology

where: N_m , N_g are the numbers of nuclei for m, g state, λ_m and λ_g are the decay constants of these states, and P is the branching ratio for the decay of metastable to ground state. Y_m and Y_g are the reaction yields.

•The reaction yield, Y_v, can be expressed as

$$Y_i = N_0 \int_{E_{th}}^{E_{\gamma \max}} \sigma_i(E) \Phi(E) dE$$

The reaction cross-section, σ_{i} , can be expressed as

$$\sigma_i = \frac{S\lambda(1 - e^{-\lambda T})}{\Phi N_0 \varepsilon I_{\gamma} (1 - e^{-\lambda T})(1 - e^{-\lambda t_i})e^{-\lambda t_w}(1 - e^{-\lambda t_c})}$$

• Isomeric Ratio: $IR = \frac{\sigma_m}{\sigma_g} = \left[\left(\frac{C_g}{C_m} \times \frac{\varepsilon_m I_{\gamma m}}{\varepsilon_g I_{\gamma g}} - \frac{P\lambda_g}{\lambda_g - \lambda_m} \right) \times \frac{A_m B_m C_m D_m}{A_g B_g C_g D_g} + \frac{P\lambda_m}{\lambda_g - \lambda_m} \right]^{-1}$ where: $A_{m(g)} = \frac{1 - e^{-\lambda_{m(g)} \tau}}{1 - e^{-\lambda_{m(g)} \tau}} e^{-\lambda_{m(g)} (T - \tau)} \quad B_{m(g)} = \frac{1 - e^{-\lambda_{m(g)} t_i}}{\lambda_{m(g)}} \quad C_{m(g)} = e^{-\lambda_{m(g)} t_w} \quad D_{m(g)} = 1 - e^{-\lambda_{m(g)} t_c}$

HER Decay scheme and Nuclear reactions leading to ^{44m,g}Sc isomeric pairs

Nuclear reaction	Threshold energy	Half-life,	Main γ-ray energy,	γ-ray intensity,
	(MeV)	T _{1/2}	E _γ (keV)	Iγ (%)
${}^{45}{\rm Sc}(\gamma,n){}^{44g}{\rm Sc}{}^{45}{\rm Sc}(\gamma,n){}^{44m}{\rm Sc}{}^{16}{\rm Sc}(\gamma,n){}^{16}{\rm Sc}{}^{16}{\rm Sc}(\gamma,n){}^{16}{\rm Sc}{}^{16}{\rm Sc}(\gamma,n){}^{16}{\rm Sc}{}^{16}{\rm Sc}(\gamma,n){}^{16}{\rm Sc}(\gamma$	11.32	3.927 h	1157.03	99.9
	11.60	58.6 h	271.13	86.7
$^{ m nat}{ m Ti}(\gamma,{ m xn1p})^{44g}{ m Sc}^{ m at}{ m Ti}(\gamma,{ m xn1p})^{44m}{ m Sc}$	41.18	3.927 h	1157.03	99.9
	41.45	58.6 h	271.13	86.7
nat Fe(γ ,xn5p) ^{44g} Sc	114.89	3.927 h	1157.03	99.9
nat Fe(γ ,xn5p) ^{44m} Sc	115.16	58.6 h	271.13	86.7
$^{nat}Cu(\gamma,xn8p)^{44g}Sc$	180.63	3.927 h	1157.03	99.9
$^{nat}Cu(\gamma,xn8p)^{44m}Sc$	180.90	58.6 h	271.13	86.7

The experimental isomeric ratios

Isomeric yield ratios of ^{44m,g}Sc formed in different targets: Sc, Ti, V, Mn, Fe, Co and Cu with bremsstrahlung in the energy range 1-5 GeV as a function of mass difference, ∆A.

HER

2. Photo-fission Reaction (See H. Naik's talk)

Nuclear Instruments and Methods in Physics Research B 267 (2009) 1891-1898

Nuclear Instruments and Methods in Physics Research B

Contents lists available at ScienceDirect

BEAM INTERACTIONS WITH MATERIALS

AND ATOMS

journal homepage: www.elsevier.com/locate/nimb

Product yields for the photo-fission of ²⁰⁹Bi with 2.5 GeV bremsstrahlung

Haladhara Naik^a, Sarbjit Singh^a, Annareddy Venkat Raman Reddy^a, Vijay Kumar Manchanda^a, Guinyun Kim^{b,*}, Kyung Sook Kim^b, Man-Woo Lee^b, Srinivasan Ganesan^c, Devesh Raj^c, Hee-Seock Lee^d, Young Do Oh^d, Moo-Hyun Cho^d, In Soo Ko^d, Won Namkung^d

^aRadiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India

^bDepartment of Physics, Kyungpook National University, Deagu 702-701, Republic of Korea

^cReactor Physics Design Division, BARC, Trombay, Mumbai 400085, India

^d Pohang Accelerator Laboratory. Pohang University of Science and Technology. Pohang 790-784, Republic of "

Eur. Phys. J. A **41**, 323–334 (2009) DOI 10.1140/epja/i2009-10812-8

Measurement of photo-fission yields and photo-neutron cross-sections in ²⁰⁹Bi with 50 and 65 MeV bremsstrahlung

H. Naik¹, S. Singh¹, A.V.R. Reddy¹, V.K. Manchanda¹, S. Ganesan², D. Raj², Md. Shakilur Rahman³, K.S. Kim³, M.W. Lee³, G. Kim^{3,a}, Y.D. Oh⁴, H.-S. Lee⁴, M.-H. Cho⁴, I.S. Ko⁴, and W. Namkung⁴

¹ Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai,

² Reactor Physics Design Division, BARC, Trombay, Mumbai, 400085, India

³ Department of Physics, Kyungpook National University, Daegu 702-701, Repu

⁴ Pohang Accelerator Laboratory, Pohang University of Science and Technology,

J Radioanal Nucl Chem (2010) 283:439-445 DOI 10.1007/s10967-009-0383-1

Mass-yield distributions of fission products from photo-fission of ^{nat}Pb induced by 50–70 MeV bremsstrahlung

Haladhara Naik · Guinyun Kim · Ashok Goswami · Sarbjit Singh · Vijay Kumar Manchanda · Devesh Raj · Srinivasan Ganesan · Young Do Oh · Hee-Seock Lee · Kyung Sook Kim · Man-Woo Lee ·

Moo-Hvun Cho · In Soo Ko · Won Namkung

Table 2 Average mass and FWHM of mass distribution in the bremsstrahlung induced fission of ^{nat}Pb and ²⁰⁹Bi

Fissioning system	Bremsstrahlung energy (MeV)	Average mass $(A_{\rm H})$	FWHM mass units	Reference
^{nat} Pb	50	102.34	21	А
	60	102.25	22	А
	70	102.03	23	А
²⁰⁹ Bi	28-40	103.5	19.0	[50]
	50	103.1	20.5	[54]
	65	102.7	22.0	[53]
	85	102.5	23.0	[49]

A present work

Measurement of Proton-induced Cross-sections at KIRAM (part of K.S. Kim)

Experimental Set up at MC-50 facility

Sample Holder and Samples

AVF Cyclotron in CYRIC

Deuteron Beam Energy	maximum	This work
	65 MeV	40 MeV
Current	50μΑ	100nA

Calculation of proton beam energy degradation

HE2

TRIM Input				
Read Type of TRIM Calculation				
TRIM Demo				
Bestore Last TRIM Data 2 Basic Plots Ion Distribution with Recoils projected on Y-Plane ?				
Atomic Symbol Name of Element Number Mass (amu) Energy (keV) Angle of Incidence				
? ION DATA PT H Hydrogen ▼ 1 1.008 45000 ? 0				
TARGET DATA Input Elements to Layer 23				
Layers Add New Laver ? Add New Element to Layer Compound Dictionary ?				
Layer Name Width [g/cm3] Corr Gas Symbol Name Atomic Weight Atom Damage [eV] Number (amu) Stoich or % Disp Latt Surf				
X AI 0.5 mm V 2.702 0 V AV PT Cu Copper V 29 63.54 1 100.1 25 3 3.5.				
X Cu 0.1 mm 🔹 8.92 🦂 🛄				
X Zn 0.1 mm ▼ 7.14 0 □				
× AI 0.5 mm ▼ 2.702 0				
× Cu 0.1 mm ▼ 8.92 0				
X Zn 0.1 mm - 7.14 0				
× AI 0.5 mm ▼ 2.702 0				
Special Parameters 2 Output Disk Files				
Name of Calculation Stopping Power Version 2 Ion Ranges Burn TRIM				
H (45000) into Al+Cu+Zn+Al+Cu+Zi SRIM-2003 ? Backscattered Ions ? Resume saved TRIM calc.				
? AutoSave at Ion # 10000 Plotting Window Depths ? ? Transmitted Ions/Rwcoils Use TRIM-96				
Total Number of Ions 100000 Min 0 A T Sputtered Atoms T (DDS) Calculate Quick Range Table				
Random Number Seed Max 60000000 Å Image: Comparison of the second se				
Problem Solving Quit				

Gamma-ray spectrometry and Standard Sources

Nuclide	Half-life	Energy	Activity
¹⁰⁹ Cd	462.6d	88.0336 keV	123.7 kBq
⁵⁷ Co	271.79d	122.06065 / 136.47350 keV	53.2 kBq
¹³⁷ Cs	30.07y	661.657 keV	370.2 kBq
⁵⁴ Mn	312.1 d	834.841 keV	6.9 kBq
⁶⁰ Co	5.27 y	1173.228 / 1332.490 keV	266.3 kBq
²² Na	2.6019 y	1274.537 keV	219.1 kBq

The gamma-ray spectrometry

Determination of beam flux

HE'

Determination of Detector Efficiency

경북대학교 ^{KYUNGPOOK} NATIONAL UNIVERSITY

Formula of Cross sections calculations

Reaction Rate

Cross-Sections

$$Y = I_p . N_d . \int_{0}^{E} \frac{\sigma(E)}{\left(\frac{dE}{dx}\right)_E} . dE \times \lambda$$

$$I_{p} = Proton flux (p/cm2-sec)$$

$$N_{d} = Number density (atoms/cm3)$$

$$\sigma(E) = Cross-sections (cm2)$$

$$(dE/dx)_{E} = Stopping power (MeV/cm)$$

$$dE = E_{in}-E_{out}: energy difference$$

$$\lambda = Decay constant$$

Measured Cross sections of ^{nut}Fe(p,x)

Measured Cross sections of nat Fe(d,x)

Measured Cross sections of nut Fe(d,x)

Fig. 2. Excitation function for the nat Sn(p,x)122 Sb processes.

Fig. 5. Excitation function for the natSn(p,x)117Sb processes.

Fig. 3. Excitation function for the natSn(p,x)120mSb processes.

Fig. 6. Excitation function for the natSn(p,x)117mSn processes.

The A Excitation function for the Date of a williamch processes

Fig. 7. Excitation function for the n#Sn(p, x)113Sn processes.

Fig. 2. Excitation function of the ^{nat}Zr(p,x)^{92m}Nb reaction.

Fig. 3. Excitation function of the ^{nat}Zr(p,x)⁸⁸Zr reaction.

Fig. 4. Excitation function of the ^{nat}Zr(p,x)⁸⁹Zr reaction.

Fig. 6. Excitation function of the nat Zr(p,x)87mY reaction.

Fig. 7. Excitation function of the ^{nat}Zr(p,x)⁸⁷gY reaction.

- **Reported the recent activities on LENP :**
- Neutron Cross Section Measurement using Pohang Neutron Facility
 - 12 m TOF path length
 - New DAQ system based on FADC was developed
 - Resonance parameter determination with SAMMY code
 - 4π Gamma detector by using 12 BGO crystals for neutron capture cross section
- Neutron Activation measurements with thermal neutrons of PNF
- Photo-nuclear Reaction Measurements with 50-70 MeV and 2.5 GeV Bremsstrahlung
- > Charged particle induced reaction Measurements with MC 50 cyclotron
- Collaboration with Domestic and Foreign Users
 - Vietnam, China, India, Poland, Russia, Mongol

HER 4π Gamma detector by using 12 BGO crystals

• Coverage : 98.25% (setup1), 98.21% (setup2)

Data Acquisition System based on FADC

Papers in 2010

- 1. Measurements of neutron total cross-sections and resonance parameters of erbium at the Pohang Neutron Facility, Nucl. Instr. Meth. B 268 (2010) 106-113.
- 2. Measurement of neutron cross sections and resonance parameters of ¹⁶⁹Tm below 100 eV, Chinese Phys. C 34 (2010) 1-5.
- 3. Measurement of isomeric yield ratios in ^{nat}In and ^{nat}Sn with 50, 60, and 70 MeV bremsstrahlung photons, Nucl. Instr. Meth. B 268 (2010) 13-19.
- 4. Measurement of keV-neutron capture cross-sections and capture g-ray spectra of ⁵⁶Fe and ⁵⁷Fe, Nucl. Instr. Meth. B 268 (2010) 440-449.
- 5. Cyclotron production of the ^{105,106m}Ag, ^{100,101}Pd, ^{100,101m,105}Rh radionuclides by ^{nat}Pd(p,x) nuclear processes, Nucl. Instr. Meth. B 268 (2010) 2303-2311.
- 6. Isomeric yield ratios in the photoproduction of ^{52m,g}Mn from natural iron using 50-, 60-, 70-MeV, and 2.5-GeV bremsstrahlung, J. Radioanal Nucl. Chem. 283 (2010) 683-690.
- 7. Measurement of isomeric-yield ratios for the ${}^{197}Au(\gamma,n){}^{196m,g}Au$ reactions induced by bremsstrahlung, J. Radioanal Nucl. Chem. 283 (2010) 519-525.
- 8. Mass-yield distributions of fission products from photo-fission of ^{nat}Pb induced by 50–70 MeV bremsstrahlung, J. Radioanal Nucl. Chem. 283 (2010) 439-445.
- Multicrystal Scintillation Detector for Investigation of Angular Correlations in (n,γ) Reactions, IEEE Trans. Nucl. Sci., 57 (2010) 1391-1395.
- 10. Measurement of isomeric yield ratios for ⁹³Nb(γ,4n)^{89m,g}Nb and ^{nat}Mo(γ,xn1p)^{95m,g}Nb reactions with 50-, 60-, and 70-MeV Bremsstrahlung, J. Radioanal Nucl. Chem. DOI 10.1007/s10967-010-0839-3.
- 11. Measurement of isomeric yield ratios for the ^{44m,g}Sc isomeric pairs produced from ⁴⁵Sc and ^{nat}Ti targets at 50-, 60-, and 70-MeV Bremsstrahlung, J. Radioanal Nucl. Chem. DOI 10.1007/s10967-010-0831-y
- 12. Measurement of thermal neutron cross-section and resonance integral for the 165 Ho(n, γ) 166g Ho reaction using electron linac-based neutron source, accepted in NIMB.
- 13. Mass-yield distribution of fission products from photo-fission of natPb induced by 2.5 GeV bremsstrahlung, minor correction in European Physical Journal A