Neutron total Cross-sections and Resonance parameters of Dy at Pohang Neutron Facility

Manwoo Lee Department of Physics, Kyungpook National University, Daegu 2010 October 28 / 10:40 – 11:20

2010 AASPP Workshop The 1st Asian Nuclear Reaction Database Development Workshop

Total Cross Section Measurement of Pohang Neutron Facility

Contents 1

- 1. Total Cross Section Measurement
- 2. Pohang Neutron Facility
- 3. Current TOF DAQ
- 4. Flash ADC TOF DAQ
- 5. Signal and Noise separation
- 6. Neutron Energy Calibration
- 7. Flight Length and t_0 fitting
- 8. Dysprosium FADC TOF Spectra

1. Total Cross Section Measurement **1. Neutron Energy E in eV corresponding to channel I in TOF** $E[eV] = \left(\frac{72.3 \times L[m]}{T[\mu s]}\right)^2 \qquad L: \text{ flight path length} \\ T: \text{ time of flight}$ 2. Experimental Set up **Background count** Φ_0 Neutron Sample **Detector** 3. Neutron Transmission rate $T(E_i) = \frac{Count_with_Sample}{Count_without_Sample} = \frac{\left\{ In(E_i) - In^B(E_i) \right\} / M}{\left\{ Out(E_i) - Out^B(E_i) \right\} / M^B} = \frac{C_{In}(E_i) / M}{C_{Out}(E_i) / M^B}$ 4. Total Cross Section $\sigma(E) = \frac{1}{N} \ln T(E)$

2. Pohang Neutron Facility

3. Current TOF DAQ

4. Flash ADC TOF DAQ (1)

•TOF Signal Data without Noise is possible due to the pulse shape analysis

Gamma Flash due to
BremsstrahlungNoise Rejection using a Software
is possible and easy using FADC

5. Signal and Noise separation (1)

- 7 Parameters are studied to find best cuts to separate Signal and Noise
- 21 cases are studied and 4 are selected as a best conditions for a better S/N
- 1. <a>timeTOF : triggered time[us] from GATE
- 2. Sigave: Average ADC values
- 3. sigSE: Standard Error(SE) of Signals
- 4. pedSE: SE of pedestal in first 20 bins
- 5. drvave: Average of first derivative of ADC
- 6. drvSE: SE of drvave

7. MinSigDrv: Minimum value of first derivative

5. Signal and Noise separation (2)

5. Signal and Noise separation (3)

Sigave:drvave

5. Signal and Noise separation (4)

5. Signal and Noise separation (5)

5. Signal and Noise separation (6)

5. Signal and Noise separation (7)

4 cuts => S/N = 448.4, Signal Loss=1.19 %, Noise Rejection = 98.7 %

6. Neutron Energy Calibration

Using Notch Filter (Co, Cd, In)

$$E = \left(\frac{72.3 \times L[m]}{t - t_0[\mu s]}\right)^2 [eV] \qquad \qquad t[\mu s] = \frac{72.3 \times L[m]}{\sqrt{E[eV]}} + t_0$$

Using a linear fitting of four energies from Notch Filter, L and t_o are found

L=11.578 \pm 0.012 [m] t_o=3.158 \pm 0.295 [us]

$$E = \left(\frac{72.3 \times 11.578}{t[\mu s] - 3.158}\right)^2 [eV]$$

8. Dysprosium TOF Spectrum

Log

TOF2

Entries 1.25934e+07

10⁴

TOF2

Entries 1.25934e+07

10³

407.9

282.8

10³

2876

1875

Neutron Resonance Analysis using SAMMY

Contents 2

- 1. SAMMY-8 Introduction
- 2. Pre_SAMMY Run
- 3. Input Data Preparation
- 4. SAMMY fitting

1. SAMMY Introduction (1)

OAK RIDGE NATIONAL LABORATORY

managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY

RSICC PERIPHERAL SCIENCE ROUTINE

SAMMY-8

Code System for Multilevel R-Matrix Fits to Neutron and Charged-Particle Cross-Section Data Using Bayes' Equations

1. SAMMY Introduction (2)

http://www.ornl.gov/sci/nuclear_science_technology/nuclear_data/sammy/

data in the resonance region

1. SAMMY Introduction (4)

- Types of data:
 - total, elastic, capture, fission, inelastic, other reactions
 - Coulomb or not
 - angular distributions for elastic cross sections
 - certain types of integral data

1. SAMMY Introduction (5)

II.B.3.a. Single and multilevel Breit-Wigner cross sections

$$\sigma^{elastic} = \sigma^{elastic} + \sigma^{fission} + \sigma^{capture}$$

$$\sigma^{elastic} = \frac{\pi}{k^2} \sum_{J} g_J \sum_{c} \left\{ (1 - \cos 2\varphi) \left(2 - \sum_{\lambda} \Gamma_{\lambda c} \Gamma_{\lambda} / d_{\lambda} \right) + 2 \sin 2\varphi \sum_{\lambda} \Gamma_{\lambda c} (E - E_{\lambda}) / d_{\lambda} + \left(\sum_{\lambda} \Gamma_{\lambda c} (E - E_{\lambda}) / d_{\lambda} \right)^2 + \left(\sum_{\lambda} \Gamma_{\lambda c} \Gamma_{\lambda} / 2 d_{\lambda} \right)^2 \right\}$$

$$\sigma^{fission} = \frac{\pi}{k^2} \sum_{J} g_J \sum_{c} \sum_{c'} \sum_{\lambda} \frac{\Gamma_{\lambda c} \Gamma_{\lambda c'}}{d_{\lambda}}$$

$$\sigma^{capture} = \frac{\pi}{k^2} \sum_{J} g_J \sum_{c} \sum_{\lambda} \frac{\Gamma_{\lambda c} \overline{\Gamma}_{\lambda \gamma}}{d_{\lambda}}$$
SAMMY will calculate Resonance Energy, Gamma-Neutron, Gamma, etc.

Resonance Parameters Deduced by SAMMY

- SAMMY is a multilevel R-matrix code for fitting neutron time-of-flight crosssection data using Bayes' method.
- The resonance analysis with SAMMY code provides complete information on the covariance for the resonance's parameters
- The main feature of SAMMY code is analysis of neutron resonance parameters based on neutron transmission and capture experimental data

R-matrix formula
$$R_{cc'} = \sum_{\lambda} \frac{\gamma_{\lambda c} \gamma_{\lambda c'}}{E_{\lambda} - E - i \gamma_{\lambda \gamma}^{2}}$$

c,c`: particle channel except for capture channel γ : reduced-width amplitude $\Gamma_{\lambda c} = 2P_{1}\gamma^{2}_{\lambda c}$ for neutron channel $\Gamma_{\lambda c} = 2\gamma^{2}_{\lambda c}$ for fission channel $\Gamma_{\lambda c} = 2\alpha^{2}_{\lambda}$ for gamma channel P_{1} : penetrability(penetration factor)

2. Pre_SAMMY Run(1)

- To make *.DAT, *.INP, *.PAR for Pre_Sammy run
- Pre_Dat file: (N, G)file_MT102 of ENDF_VII for Dy 156, 158, 160, 161, 162, 163, 164
- o http://www.nndc.bnl.gov

2. Pre_SAMMY Run(2)

• Manual options:[-]→Energy -> eV 로 변환→ Repaint → See: plotted data

2. Pre_SAMMY Run(3)	
• *.PAR → Input for Variable Parameters <u>http://www-nds.iaea.org/exfor/endf.htm</u> Standard Request Examples: 1234567 © Go to: Advanced Request; ENDF-Explorer	
Parameters: Submit Target DY-161 N,RES N,RES Quantity Nore Parameters Submit Submit	
ENDF Data Selection Retrieve Selected Ounselected All Reset	
Sorted by: [Reactions] Reorder by: [Libraries] View:	
Output Data Format Data (Size) ENDF Text (59Kb) ZIP (12Kb)	

2. Pre_SAMMY Run(4) • *.PAR → Input for Variable Parameters

 Save the rectangular part as Dy156.ENDF to extract parameters using SAMMY.
 Repeat these steps for all isotopes

2. Pre_SAMMY Run(5)

• *.INP → Input for Pre-SAMMY Run

K Dy156.inp (~₩바탕 화면₩2010-KorI₩pre	_sammy₩Dy_sammy₩Dy156) - GVIM	Ko,samprerun.sh (~₩바탕 화면₩2 <u>01earData</u>)
파일(<u>F</u>) 편집(<u>E</u>) 도구(<u>T</u>) 문법(<u>S</u>) 버퍼(<u>B</u>) 형	방(₩) 도움말(<u>H</u>)	파일(E) 편집(E) 도구(T) 문법(<u>S</u>) 버퍼(<u>B</u>) 창(<u>W</u>
	1 🔁 🍐 🕺 🕆 🖨 💶 🤉 🎗	
Dy156 Dy156 155.924 0.00001 10000. PRINT THEORETICAL VALUES USE NEW SPIN GROUP FORMAT DO NOT SUPPRESS ANY INTERMEDIATE RES PRINT REDUCED WIDTHS DO NOT SOLVE BAYES EQUATIONS TWENTY GENERATE PLOT FILE AUTOMATICAL INPUT IS ENDF/B FILE 2 293.0 25.5960 0.000000 0.0000 6.5200 1.6485E-2 capture	0 5 ULTS 000 .000 0.0 0.000	<pre>#?/bin/bash rm -rf *SAM* PWD=`pwd` BASENAME=`basename \$PWD` sammy << EOF \$BASENAME.inp \$BASENAME.endf \$BASENAME.dat.ori_TWENTY.CNV \$1 \$2 EOF if [-f SAMMY.PLT]; then</pre>
 Only change name and atomic weight from Dy156.inp for all isotopes Repeat these steps for all isotopes 	Pre-SAMMY Run	samplt << EOF SAMMY.PLT N EOF root -b -q 'SAMROOT.C("'\$BASENAME'")' fi

[sammy@linux Dy156] 0.samprerun.sh 0.0001 1000.0

2. Pre_SAMMY Run(6)

 Image: Sammy Hog Samy Hog Samy Hog Samy Hog Sammy Hog Sammy Hog Sammy Hog Sammy Hog

PRINT REDUCED WIDTHS Do not solve bayes equations

TWENTY GENERATE PLOT FILE AUTOMATICAL

MLBW FORMALISM IS WANTED

PUT QUANTUM NUMBERS INTO PARAMETER FILE

293.0 25.5960 0.000000 0.000000 7.500000 0.016485 Capture

0.00000.0 0.00000 0.000

1 1 0 0.5 1.0 0.0 1 1 0 0 0.5

- Result of Pre-SAMMY Run
- SAMNDF.INP & PAR
- Repeat Pre-SAMMY Run for all isotopes
- Combine these result to make real DyNAT.PAR file

K SAMNDF, P	AR (~₩바탕 호	년₩2010-Ko	,₩pre_s	ammy₩Dy	/_sammy₩	Dy 15	6) - GVIN
파일(F) 편집([E) 도구(I) 문	력(<u>S</u>) 버퍼(<u>B</u>)	창(<u>₩</u>)	도움말(<u>H</u>)			
8898	90 0 X	n ti 🏠	Ð. 🔂	1 4 5	L 🕆 🎝		? %
2.150000000	83.600000	.20000000			0	0 0	1
3.210000000	83.6000000	.80000000			0	0 0	1
9.190000000	83.600000	.60000000			0	00	1
15.20000000	83.6000000	4.60000000			9	0 0	1
17.40000000	83.600000	.320000000			0	0 0	1
17.70000000	83.600000	.100000000			0	0 0	ा । ।
19.60000000	83.600000	9.00000000			0	00	1
24.50000000	83.6000000	2.40000000			0	0 0	1
27.40000000	83.600000	.400000000			0	0 0	1
28.10000000	83.600000	.40000000			0	0 0	1
29.30000000	83.600000	8.7000000			0	0 0	1
36.00000000	83.600000	9.0000000			0	0 0	1
37.80000000	83.6000000	.400000000			0	0 0	1
38.6000000	83.6000000	.400000000			0	0 0	1
46.9000000	83.6000000	14.0000000			0	0 0	1
52.00000000	83.6000000	16.0000000			0	0 0	1
68.6000000	83.6000000	54.0000000			0	0 0	1
85.50000000	83.6000000	15.0000000			0	0 0	1
90.9000000	83.6000000	42.0000000			0	0 0	1

3. Input Data Preparation (1)
SAMMY Input Data: *.DAT, *.INP, *.PAR

- *.DAT → Modify an experimental data using one of three data formats
- *.INP → Input for FIXED Parameters
- *.PAR → Input for Variable Parameters: Resonance Energy, Gamma-neutron, Gamma-Gamma, Gamma-Fission

3. Input Data Preparation (2)

• Experimental Data Formats

1. "USE CSISRS FORMAT FOr data"

- 2. "USE TWENTY SIGNIFICAnt digits for experimental data"
- 3. "USE ENDF/B ENERGIES and cross sections MAT=abcd"

```
if ( format == "CSISRS" ) {
              // Make CSISRS format [ E1 Y1 YE1 ]
                                                                       else { // format == "ENDF/B"
                                    E2 Y2 YE2
                                                                       // Make old default format [ E1 Y1 YE1/Y1 E2 Y2 YE2/Y2 E3 Y3 YE3/Y3 ]
                                     .. .. ...
                                                                                     [ E4 Y4 YE4/Y4 E5 Y5 YE5/Y5 E6 Y6 YE6/Y6 ]
                                                                       //
                                    [11f 11f 11f] without blank space
                                                                       11
                                                                                     [ ..... ]
  if ( (Energy > Emin) && (Energy < Emax) ) {
                                                                                     [""14f""14f7.5f""14f""14f7.5f""14f""14f7.5f]
    FORMAT = Form(" %10.4e %10.4e %10.4e", Energy, Barn, BarnError);
                                                                          if ( (Energy > Emin) && (Energy < Emax) ) {
   out1 << FORMAT << endl;
                                                                           FORMAT = Form(" %14.8e %14.8e%7.5f", Energy, Barn, BarnError/Barn);
                                                                           out1 << FORMAT;
 else if ( format == "TWENTY" ) {
                                                                           i++;
                                                                           if ((j\%_3) == 0) { out1 << endl; }
              // Make TWENTY format [ E1 Y1 YE1 ]
                                     [E2 Y2 YE2]
                                     [....]
                                    [ 20f 20f 20f ] without blank space
   if ( (Energy > Emin) && (Energy < Emax) ) {
              FORMAT = Form("%20.10f%20.10f%20.10f", Energy, Barn, BarnError);
    out1 << FORMAT << endl:
                                                                          0.1035080180
                                                                                                  0.4333768189
                                                                                                                          0.0046054958
                                                                          0.1037130877
                                                                                                  0.4286459982
                                                                                                                          0.0046045193
 }
                                                                          0.1039187759
                                                                                                  0.4333532155
                                                                                                                          0.0046566990
                                                                          0.1041250527
                                                                                                  0.4287957549
                                                                                                                          0.0046119601
```

3. Input Data Preparation (3)

• *.INP → Input for FIXED parameters

• DyNAT.INP

Table VI A.1. Format of the INPut File

		C:L	P,T	Variable name	Meaning (units)	Notes
Dy EPITHERMAL TRANSMISSION - Dynat	~	1:1	1-80, A	TITLE		
PRINT THEORETICAL VALUES		2:1	1-10, A	ELMNT	Sample element's name	
PRINT ALL INPUT PARAMETERS			11-20, F	AW	Atomic weight (amu)	**************************************
DO NOT SUPPRESS ANY INTERMEDIATE RESULTS PRINT REDUCED WIDTHS SOLVE BAYES EQUATIONS TWENTY			21-30, F 31-40, F	EMIN EMAX	Minimum energy for this data set (eV) Maximum energy (eV)	These values for EMIN and EMAX will be ignored if values are given in the interactive input (see Section VI.E)
EV YIELD FGM GENERATE PLOT FILE AUTOMATICALLY REICH-MOORE FORMALISM IS WANTED 293.0 11.51727 0.002260 0.1500000 -0.01800 0.01000 4 6.47906 256.000 30.10087 128.000 75.09176 64.000			41-45, I	NEPNTS	 Number of points to be used in generating artificial energy grid (default = 10001) Maximum number of points to be analyzed at one time (default = 500). Use of this option is discouraged. 	 See Section V.A for a discussion of the artificial energy grid. NEPNTS is the number of data points to be included in each region when "DIVIDE DATA INTO REGions" is specified in card set 3.
1000.07062 32.000 7.500000 1.5824E-3 TRANSMISSION 0.00100 GROUPING part			* * T U	SOL ^V DO N heor	VE → Data Fit NOT SOLVE→ retical Value (Parameter fi	ting Calculation les

3. Input Data Preparation (4) • *.INP → Input for FIXED parameters **Continued of DyNat.INP**

1	1	0 0.5 0.0006 0.0 Dy150	5
1	1	0 0 0.5	
2	1	0 0.5 0.0010 0.0 Dy15	58
1	1	0 0 0.5	-
3	1	0 0.5 0.0234 0.0 Dy16	50 1
1	1	0 0 0.5	
4	1	0 2.0 0.1891 2.5 Dy16	1 15
1	1	0 0 2.0	
5	1	0 3.0 0.1891 2.5 Dy16	1 15
1	1	0 0 3.0	15
6	1	0 0.5 0.2551 0.0 Dy16	2
1	1	0 0 0.5	
7	1	0-0.5 0.2551 0.0 Dy16	2 16
1	1	0 1 0.5	
8	1	0 -1.5 0.2551 0.0 Dy16	2
1	1	0 1 0.5	16
9	1	0-2.00.2490 -2.5 Dy1	63
1	1	0 0 -2.0	18
10	1	0-3.00.2490 -2.5 Dy1	.63
1	1	0 0 -3.0	
11	1	0 0.5 0.2818 0.0 Dy16	54 16
1	1	0 0 0.5	
12	1	0-0.5 0.2818 0.0 Dy1	64
1	1	0 1 0.5	18
13	1	0 -1.5 0.2818 0.0 Dy16	54
1	1	0 1 0.	_

iso	NA	half- life	DM	DE (MeV)	DP
¹⁵⁴ Dy	syn	3,0×10 ⁸ y	α	2,947	¹⁵⁰ Gd
¹⁵⁶ Dy	0,06%	1×10 ^{1.8} y	α	?	¹⁵² Gd
158 _{Dy}	0,10%	¹⁵⁸ Dy	is si neu	table wit trons	h 92
¹⁶⁰ Dy	2,34%	¹⁸⁰ Dy	is st neu	table wit trons	h 94
¹⁶¹ Dy	18,91%	¹⁸¹ Dy	is st neu	table wit trons	h 95
¹⁸² Dy	25,51%	¹⁶² Dy	is st neu	table wit trons	h 96
¹⁶³ Dy	24,90%	¹⁸³ Dy	is st neu	table wit trons	h 97
¹⁶⁴ Dy	28,18%	¹⁸⁴ Dy	is st neu	table wit trons	h 98

Look for Dysprosium of Wiki or Use Pre-SAMMY Run results

^{155m} Dy	234	4, 33(3	3) keV	6(1) µs	11/2-	
¹⁵⁸ Dy	66	90	155,924283(7)	STABLE [>1E+18 a]	0+	0,00056(3)
¹⁵⁷ Dy	66	91	156,925466(7)	8,14(4) h	3/2-	
^{157m1} Dy	161	1,99(3	3) keV	1,3(2) µs	9/2+	
^{157m2} Dy	199	9, 38(7	7) keV	21,6(16) ms	11/2-	
¹⁵⁸ Dy	66	92	157,924409(4)	STABLE	0+	0,00095(3)
¹⁵⁹ Dy	66	93	158,9257392(29)	144,4(2) d	3/2-	
^{159m} Dy	352	2,77(1	14) keV	122(3) µs	11/2-	
¹⁸⁰ Dy	66	94	159,9251975(27)	STABLE	0+	0,02329(18)
¹⁸¹ Dy	66	95	160,9269334(27)	STABLE	5/2+	0,18889(42)
¹⁸² Dy	66	96	161,9267984(27)	STABLE	0+	0,25475(36)
¹⁸³ Dy	66	97	162,9287312(27)	STABLE	5/2-	0,24896(42)
¹⁸⁴ Dy	66	98	163,9291748(27)	STABLE	0+	0,28260(54)

2. Input Data Preparation (5) o DyNat.PAR → Input for Variable Parameters

E_{λ}	Ιγ	I c1	I _{c2}	I _{c3}				Tau	DIE VI D.	2. Forma	it of the PARameter h
2.150000000	83.600000	.200000000			00	0	01	C:L	P, T	Variable Name	Meaning (units)
3.210000000 9.190000000	83.6000000	.800000000			00	0 0	ย1 01	1:1	1-11, F	E _λ	Resonance energy E_{λ} (eV)
15.20000000	83.600000	4.6000000			00	0	01		12-22, F	Γγ	Capture width (milli-eV)
17.40000000 17.70000000 10.6000000	83.6000000				00) ()) ()	ย1 01 01		23-33, F	Γ _{c1}	Particle width for channel 1 (milli-eV)
24.50000000 27.40000000	83.6000000 83.6000000	2.40000000			00) 0	01 01		34-44, F	Γ _{c2}	Particle width for channel 2 (milli-eV)
28.10000000	83.600000	.400000000		•	0 0) 0	91		45-55, F	Γ _{c3}	Particle width for channel 3 (milli-eV)
	•	ē		•	∣⊧				56-57, I	ISE	$Vary E_{\lambda}$?
3460.500000	114.200000	28.000000			0 0	0	13				
3520.300000 3621 000000					0 0 0 0	0	12		58-59, I	ISγ	Vary Γγ?
3911.600000	114.200000	17.0000000			0 0	0 6	1 13		60-61, I	IS _{c1}	Vary Γ _{c1} ?
4095.800000	114.200000	30.000000			0 0	0	┝╋╬		62-63, I	IS _{c2}	Vary Γ _{c2} ?
4348.800000	114.200000	25.5000000			00	0	13	_	64-65, I	IS _{c3}	Vary Γ_{c3} ?
4389.200000 4916.000000	114.200000	14.5000000			00	0	13 13 ←		66-67, I	IGROUP	Quantum numbers for this resonance are those of group number IGROUP (card set 10.1 or 10.2 in Table VIA.1)

3. Sammy Fitting (1)

Grouping

Transmission

Cross Section and Resonance Parameters

Sa Sa

Sammy Fitting using Input files

SAMMY Run

sammy DyNat.inp DyNat.par DyNat.dat 0.1 200

OUTPUT

SAM_ASCII.PLT → Fitted Cross Section SAM_ASCII_2.PLT → Fitted Transmission Rate SAMMY.PAR → Fitted variable parameters SAMMY.LPT → Total SAMMY Fitting Report

3. Sammy Fitting (2)

3. Sammy Fitting (3)

First RESULTS of SAMMY

SAM_ASCII.PLT → Fitted Cross Section

K SAM_ASCII.PLT	(~₩바탕 화면₩ND)	2010WDyWsammy) -	GVIM6	_	
파일(<u>F</u>) 편집(<u>E</u>) 도	구(<u>T</u>) 문법(<u>S</u>) 버I	버(<u>B</u>) 창(₩) 도움말(H)		
98079	G X D C	🖏 🗞 🗞 📥 📥	🎗 🗍 🗿 💶 🛛	? B	
Energy	Data	Uncertainty	Th_initial	Th_final	- <u>-</u>
1.3025376	181.30036	8.5137938	164.72168	164.65109	
1.3117266	173.78704	8.4353505	166.51183	166.44314	
1.3210131	179.57890	8.4119245	168.48514	168.41849	
1.3303987	162.78007	8.4507571	170.66095	170.59646	
1.3398849	180.73825	8.4653113	173.06178	172.99962	
1.3494726	197.27698	8.4692367	175.71328	175.65362	
1.3591636	177.34523	8.3897087	178.64514	178.58816	
1.3689594	206.74253	8.4714438	181.89162	181.83752	
1.3788614	196.01652	8.5047413	185.49237	185.44137	
1.3888714	203.90112	8.5303637	189.49377	189.44611	
1.3989906	201.16411	8.4983986	193.94981	193.90576	

SAM_ASCII_2.PLT → Fitted Transmission Rate

KSAM_ASCII_2,PL1	「(~₩바탕 화면₩N	D2010₩Dy₩sammy) -	GVIM9	_	
파일(<u>F</u>) 편집(<u>E</u>) 도구	구(<u>T</u>) 문법(<u>S</u>) 버표	H(<u>B</u>) 창(₩) 도움말(<u>H</u>)			
48049	G X D C	🚯 🔁 🟯 🛃 🍰 🍰	🔪 🗍 🗿 😋 🛛	? A	
Energy	Transmisio	n Uncertainty	Tr_initial	Tr_final	
1.3025376	0.75092119	1.01012373E-02	0.77054626	0.77063234	
1.3117266	0.75988853	1.01276832E-02	0.76836660	0.76845012	
1.3210131	0.75296640	1.00075565E-02	0.76597106	0.76605186	1000
1.3303987	0.77321935	1.03241764E-02	0.76333836	0.76341626	
1.3398849	0.75158840	1.00526391E-02	0.76044388	0.76051868	
1.3494726	0.73220289	9.79789530E-03	0.75725995	0.75733144	
1.3591636	0.75562847	1.00164143E-02	0.75375487	0.75382283	
1.3689594	0.72133386	9.65496800E-03	0.74989259	0.74995679	
1.3788614	0.73366255	9.85858400E-03	0.74563198	0.74569215	
1.3888714	0.72457951	9.76586430E-03	0.74092569	0.74098157	
1.3989906	0.72771972	9.77143460E-03	0.73571963	0.73577091	

SAMMY.PAR → Fitted variable parameters

K SAMMY,PAR (~₩바탕 화면₩ND2010₩Dy₩sammy) - GV	M7
파일(E) 편집(E) 도구(I) 문법(S) 버퍼(B) 창(₩) 도움말(H)	
	â 🕆 🖨 💶 🤉 ዬ
1944.300000 105.800000 240.000000	000 3
1994.300000 105.800000 250.000000	000 3
-1.89000000 106.800000 10.8400000	000 5
2.741176157 136.380489 .6666679893	111 5
3.724688419 144.286082 2.16324484	111 4
4.368586984 113.451917 1.32007559	111 4
7.740000000 107.000000 .514285800	000 5
10.26000000 106.800000 .288000000	000 4
10.85000000 106.800000 .411428600	000 5
12.65000000 106.800000 .048000000	000 5

$E_{\lambda} \qquad \Gamma_{\gamma} \qquad \Gamma_{c1}$ SAMMY.LPT \rightarrow Total SAMMY Fitting Report

SAM	IMY,LPT	(~₩바탕	화면₩N	D2010WD	y₩samr	ny) - GVIM	8			
·일(E)	편집(<u>E</u>)	도구(<u>T</u>)	문법(<u>S</u>)	버퍼(<u>B</u>)	창(₩)	도움말(<u>H</u>)				
9 🛛		9 C	光 喧	ê 🔒	€. €.	1 4 8	, T	â 🖸	? '	A
51)	1.91577	9 0.583	301	(104)3.	194038	0.844324	(157)6.3	57799	0.729370
52)	1.93218	8 0.619	759	(105)3.	229429	0.842182	(158)6.4	57529	0.771010
53)	1.94880	9 0.650	835	(106)3.	265412	0.840388				
111 6	rrau si	ze used	For SE	MMY-TNT	is	14866 #				
+## E	ctimato	d arrau	ci70 4	OF SOM	IV_TPN -	ic 11	192	***		
	Stimate	u array	3126 1	or shri	п н ү .		1102			
птан	MADV CU		FD -	1015 7/						
пети	MARY CH			NED BU	NDOT -	6 12993	2			
+## 0	mmni on Mersu ci	zo ucod	LD DIVI	MMU_TD	lic	12120 1	,			
**** *		ze useu	TUT SP	11111-1FU	1 13 11 FTN .	12120 4	+## 1507 -			
HHH F	stimate	o array	size t	or shu	IY-FIN :	LS 11	1590	HHH		
1## A	irray si	ze used	For SF	NMMY-FIN	l is	8351 #	1##			
				Tota	1 time	= 0.3	37 se	conds		
lorma	1 finis	h to SA	MM ¹							
202012										

3. Sammy Fitting (4)

3. Sammy Fitting (5)

Second RESULTS of SAMMY

SAM_ASCII.PLT → Fitted Cross Section

SAMMY.PAR → Fitted variable parameters

🐕 SAM_ASCII.PLT (~	₩바탕 화면₩	SAPPORO) - GVIM5			₭ SAMMY.PAR (~₩바탕 화면₩SAPPORO) - GVIM6	
파일(E) 편집(E) 도구(<u>T</u>) 문법(<u>S</u>) 버	H퍼(<u>B</u>) 창(₩) 도움말(<u>H</u>)			파일(E) 편집(E) 도구(T) 문법(<u>S</u>) 버퍼(<u>B</u>) 창(<u>W</u>) 도움말(<u>H</u>)	
486496	/ X D @	8888666	🖸 🛱 🖓	? A	4 9 0 4 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	-
Energy 1.3025376 1.3117266 1.3210131 1.3303987 1.3398849 1.3494726 1.3591636 1.3689594 1.3788614 1.3888714	Data 181.30036 173.78704 179.57890 162.78007 180.73825 197.27698 177.34523 206.74253 196.01652 203.90112	Uncertainty 8.5137938 8.4353505 8.4119245 8.4507571 8.4653113 8.4692367 8.3897087 8.3897087 8.4714438 8.5047413 8.5303637	Th_initial 165.28435 167.07284 169.04455 171.21931 173.61978 176.27173 179.20501 182.45407 186.05882 190.06591	Th_final 165.16002 166.94572 168.91443 171.08598 173.48301 176.13126 179.06057 182.30536 185.90550 189.90761	1944.300000 105.800000 240.000000 0 0 3 1994.300000 105.800000 250.000000 0 0 3 -1.89000000 105.800000 10.8400000 0 0 0 5 2.740993036 137.546784 .670462372 1 1 1 5 3.724466930 143.806986 2.16238008 1 1 1 4 4.368726402 114.377050 1.33812149 1 1 4 7.829002600 212.322502 .838869818 1 1 1 7.829002600 212.322502 .838869818 1 1 4 10.04930701 119.397391 .362273576 1 1 4 11.02562238 120.660458 .345125992 1 1 5 12.84177451 105.542074 .054033458 1 1 1 5	
1.3989906	201.16411	8.4983986	194.52969	194.36602	$E_{\lambda} \Gamma_{\gamma} \Gamma_{c1}$	

SAM_ASCII_2.PLT → Fitted Transmission Rate

🕻 SAM_ASCII_2.F	PLT (~₩바탕 화면₩8	SAPPORO) - GVIM		
파일(E) 편집(<u>E</u>) 도	[구(<u>T</u>) 문법(<u>S</u>) 버퍼(<u>B</u>	<u>3</u>) 창(<u>₩</u>) 도움말(<u>H</u>)		
48949	G X 10 16 5	1 2 2 2 2 2 2	🔰 🛱 🖸	9 %
Energy	Transmission	Uncertainty	Tr_initial	Tr_final
1.3025376	0.75092119	1.01012373E-02	0.76986050	0.77001197
1.3117266	0.75988853	1.01276832E-02	0.76768478	0.76783923
1.3210131	0.75296640	1.00075565E-02	0.76529332	0.76545091
1.3303987	0.77321935	1.03241764E-02	0.76266421	0.76282513
1.3398849	0.75158840	1.00526391E-02	0.75977272	0.75993718
1.3494726	0.73220289	9.79789530E-03	0.75659106	0.75675925
1.3591636	0.75562847	1.00164143E-02	0.75308739	0.75325953
1.3689594	0.72133386	9.65496800E-03	0.74922546	0.74940179
1.3788614	0.73366255	9.85858400E-03	0.74496393	0.74514469
1.3888714	0.72457951	9.76586430E-03	0.74025520	0.74044064
1.3989906	0.72771972	9.77143460E-03	0.73504483	0.73523523

SAMMY.LPT → Total SAMMY Fitting Report

K SAMMY.LPT (~₩바탕 화면₩SAPPORO) - GVIM4
파일(E) 편집(<u>E</u>) 도구(<u>T</u>) 문법(<u>S</u>) 버퍼(<u>B</u>) 창(<u>W</u>) 도움말(<u>H</u>)
- C C X C C X C C X C C C X C C C C C C
(317)0.208697 0.549634 (634)0.678086 0.742931 ### Array size used for SAMMY-INT is 34850 ### ### Estimated array size for SAMMY-NPV is 477421 ### CUSTOMARY CHI SOUARED = 2316.83
CUSTOMARY CHI SQUARED DIVIDED BY NDAT = 2.43877

Development of Capture Cross Section Measurement System of Pohang Neutron Facility Contents 3

- Neutron Capture Cross-section
- BGO Crystal Study
- 4π BGO Gamma Detector
- BGO detector modules
- BGO Temperature Compensation
- DAQ system using FADC
- Current Status

Neutron Capture Cross-section

Measurement with a total energy absorption detector by TOF method

Relation between neutron capture yield and cross sections:

$$Y(E_i) = (1 - e^{-N\sigma_t(E_i)t}) \frac{\sigma_c(E_i)}{f_c(E_i)\sigma_t(E_i)}$$

 $\begin{array}{l} Y(Ei): \mbox{ neutron capture yield} \\ N: \mbox{ atomic density of sample} \\ t: \mbox{ thickness of sample} \\ \sigma_t(Ei): \mbox{ neutron total cross section} \\ \sigma_c(Ei): \mbox{ neutron capture cross section} \\ f_c(Ei): \mbox{ correction function for neutron scattering and/or self-shielding in sample} \end{array}$

If the thickness of sample is thin enough, capture cross section is

$$\sigma_c(E_i) = \frac{Y(E_i)}{Nt} f_c(E_i)$$

Neutron capture yield in sample:

$$C(E_i) = \varepsilon(E_i)Y(E_i)\phi(E_i) \longrightarrow Y(E_i) = \frac{C(E_i)}{\varepsilon(E_i)\phi(E_i)}$$

 $C_{S}(E_{i})$: Counting rate for the sample by the detector system

 $\varepsilon_{S}(E_{i})$: Gamma detection efficiency of the sample

 $\phi(E_i)$: Neutron flux impinging on the sample as a function of neutron energy

Characteristics of Crystal

Scintillator	BGO	NaI (Tl)	CsI (Tl)
Wave length of max. Emission [nm]	480	410	560
Decay constant [ns]	300	230	1000
Reflactive index	2.15	1.85	1.79
Scintillation efficiency [%]	8	100*	136.8 ~ 47.3
Specific Gravity	7.13	3.67	4.51
	Non- hygroscopic	Hygroscopic	Hygroscopic

* The scintillator efficiency of NaI (Tl) is normalized to 100%

w4	in the simulation code, the physical processes include general physics process; electron magnetic process and optical process.em
	include photonelectron effect, compton effect and pair production, for electron, there are ionization, multiscattering, anni.
	wang, 2007–10–16

w5

w5	we simulated the total intrinsic efficiency of detector array for different crystals materials under 15MeV.from comparison the highest
	efficiency were given by BGO crystal case.
	wang, 2007-10-17

4π BGO Gamma Detector 1

4π BGO Gamma Detector 2

BGO detector modules 1

BGO made by SHANGHAI SICCAS HIGH TECHNOLOGY Corporation

BGO detector modules 2

Assembly Process of a module of BGO gamma detector

Preparation of Module frame Light Shield For BGO Cleaning BGO And PMT Optical Connection Fabrication Of a Module

BGO Temperature & Energy 1

Reference : Digital Temperature Sensor Module for Linux http://www.digitemp.com

BGO Temperature & Energy 2

Our BGO Light Yield of Temperature Dependence From 16 °C to 26 °C

> -1.7%/°C @ 16 °C [-1.38%/°C @ 5 °C] [REFERENCE]

Saint Gobain BGO : [SGC_BGO_Data_Sheet.pdf]

-1.2%/°C

Naisen Zhang et al. : [IEEE Trans. On Nuclear science Vol 37, No 2, April 1990] From 5 °C to 40 °C

-0.9%/°C @ 5 °C

BGO Temperature & Energy 3

Fig. 7. Slope and the interception as a function of γ -ray energy.

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 57, NO. 3, JUNE 2010

Energy Linearity

Energy Linearity compensated at 23°C

Energy Resolution

$$\frac{\Delta E}{E} [\%] = \frac{400}{\sqrt{E[keV]}} - 0.7 = \frac{12.65}{\sqrt{E[MeV]}} - 0.$$

~20% @ 400 keV, ~12% @ 1 MeV, ~8% @ 2.5MeV

Final BGO Module Test Result

4π BGO γ -detector FADC DAQ 1

•TOF spectra (TIME) + Pulse Height spectra (Signal Shape)

- •Possible for Pulse shape analysis
- •It needs fast computing system

Current Status

- 12 BGO detector modules are made and tested for Temperature, Linearity, and Resolution functions.
- Basic FADC DAQ system has been tested during Total Cross-section measurement and BGO module test.
- FADC DAQ system for Capture experiment will be arrived this year.
- The DAQ software to record 12 BGO signals will be tested next year.
- The on-line spectrum monitoring software will be developed next year.