Nuclear Data Activities in Korea

AASPP Workshop, the 1st Asian nuclear reaction database development workshop

Hokkaido University, Sapporo, Japan
25-29 October, 2010

Young-Ouk LEE, KAERI
Chronology of Nuclear Data Activities in Korea

- 1997: First start nuclear data R&D
- 2000: measured Mono-energy neutron cross sections (PNF)
- 2001: Contribute 124 photonuclear cross sections to IAEA
- 2006: Contribute 32 FP neutron cross sections to ENDF/B-VII
- 2008: Became one of the key R&Ds in KAERI: stable budget

As of 2010:
- Participate in international nuclear data network
- Coordinate domestic network in measurements, evaluation & validation
- Supply nuclear data libraries (evaluated, processed and validated) to advanced fuel cycle, future nuclear system, fusion, accelerator, etc
Nuclear Data Network

International Network

Nuclear Data Measurements

Nuclear Data Evaluation
- Processing/ Validation
- Supply to nuclear R&D

Domestic Nuclear Data Network

(Pohang PNF)
- eV pulsed neutron
- Neutron resonance
- Photonuclear reaction

(KAERI photo-ntn)
- keV pulse neutron
- TREE

(KIGAM VDG)
- MeV pulse neutron
- Wide-range standard ntn

(KoRIA)
- Fast neutron data

IAEA, OECD, BNL, EU, JAEA, CIAE etc

- SFR, AFC, ADS
- Fusion
- Accelerator
- Space etc
Nuclear Data Activities as of 2010

- **Resonance**: KERCEN code in development
- **Above Resonance**: Evaluation and Covariances for 237Np, 240Pu and Cm isotopes

- **Pohang Neutron Facility** (eV neutrons)
- **KIGAM Neutron Facility** (standard neutron fields up to ~MeV)

- **KAERI Neutron TOF Facility** on e-LINAC (above 100 KeV)
- **Nuclear Data Measurements at KoRIA** (up to tens of MeV)
KERCEN code in development (with BNL)

- Evaluates neutron c/s covariances in the resolved resonance region.
 - Uses a transparent formalism based on resonance parameter uncertainties from the *Atlas of Neutron Resonances*.
 - Handles scattering radius uncertainty explicitly.
- Produces MF33 bypassing MF32 processing issues.
<table>
<thead>
<tr>
<th>KERCEN input</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R, dR</td>
<td>scattering radius and its uncertainty</td>
</tr>
<tr>
<td>Ggᵢ,dGgᵢ</td>
<td>average gamma width and its uncertainty for (i)th partial</td>
</tr>
<tr>
<td></td>
<td>wave</td>
</tr>
<tr>
<td>CorrRP</td>
<td>correlation between resonance and potential scattering</td>
</tr>
<tr>
<td>CorrNN</td>
<td>correlation between neutron widths in the same bin</td>
</tr>
<tr>
<td>CorrGG</td>
<td>correlation between gamma widths in the same bin</td>
</tr>
<tr>
<td>CorrNGS</td>
<td>correlation between neutron and gamma widths of single resonance</td>
</tr>
<tr>
<td>CorrNNB</td>
<td>correlation between scattering c/s in different bins</td>
</tr>
<tr>
<td>CorrGGB</td>
<td>correlation between capture c/s in different bins</td>
</tr>
</tbody>
</table>
KERCEN formulae

- **Sensitivity**
 \[
 \frac{\partial \bar{\sigma}}{\partial p_{i,r}} = \sum_{r'} \frac{\partial \bar{\sigma}_{r'}}{\partial p_{i,r}} = \frac{\partial \bar{\sigma}}{\partial p_{i,r}}, \text{ where } i = \gamma, \eta
 \]

- **Uncertainty of average cross section**
 \[
 < \delta \bar{\sigma} \delta \bar{\sigma} > = \sum_{i,r,i',r'} \frac{\partial \bar{\sigma}}{\partial p_{i,r}} < \delta p_{i,r} \delta p_{i',r'} > \frac{\partial \bar{\sigma}}{\partial p_{i',r'}},
 \]
 where \(< \delta p_{i,r} \delta p_{i',r'} >\) is covariance of resonance parameters.

- In KERCEN, entire resonance energy region is divided into smaller regions called bin. Resonance-potential scattering, scattering-scattering, capture-capture and scattering-capture and bin-bin correlations are supplied as input.

- \(^{50,52,53}\)Cr, \(^{55}\)Mn, \(^{54,56,57}\)Fe, \(^{58,60}\)Ni
KERCEN procedure

Atlas of Neutron Resonances

Input file

Energy group Information from MKGROUP

KERCEN

Plots

ENDF-6 file with MF33

Covariance Matrix
Capture c/s covariances for ^{52}Cr
\[\text{corr}(\Gamma_{\gamma}, \Gamma_{\gamma}) : 0.5 \]

Scattering c/s covariances for ^{52}Cr
\[\text{corr}(\Gamma_n, \Gamma_n) : 0.5 \]
\[\text{corr}(R', \Gamma_n) : -0.5 \]
Evaluation of ^{237}Np, ^{240}Pu and Cm isotopes

✓ To improved the evaluated nuclear data with uncertainties of Minor Actinides for
 ➢ Advance Fuel Cycle (AFC), Safeguards, Fast System etc

✓ A KAERI-ORNL collaborative work under International Nuclear Energy Research Initiative (I-NERI) program
 ➢ Selected priority: ^{237}Np, ^{240}Pu, and $^{240-250}\text{Cm}$
 ➢ ORNL: RR and URR
 ➢ KAERI: Fast region
Evaluation & Covariance Procedure

- **Models & Parameters**
 - EMPIRE-III
 - ENDF file (Low energy)
 - ENDF file (Fast region)

- Sensitivity Matrices
- Exp.
 - KALMAN
 - Covariance
 - ENDF file
 - Benchmark
EMPIRE-3 calculation

- OMP
 - An isospin-dependent coupled-channels optical model potential containing the dispersive term (DCCOMP) suggested by Capote et al.. (RIPL # 2408)

- Hauser-Feshbach with width-fluctuation corrections

- DEGAS for gamma and PCROSS for others in pre-equilibrium

- Empire specific level densities

- Gamma strength function by plujiko(MLO1)

- Double-humped fission barrier
 - OMPs for fission suggested are modified in order to reproduce fission cross section
Covariances

✓ EMPIRE-KALMAN

✓ Covariances

- Sensitivity matrices from variations of model parameters in the EMPIRE-III calculation
- Using the measurements if available
- Using pseudo data with 10% uncertainty for the cross section of model calculation if no measurement is available

✓ Completed file

- Present list of covariance data generated:
 - MT=1,2,4,16,17,18,22,24,(51-91),102,103,107
 - MF=32 from ORNL for (237Np, 240Pu, 244Cm)
 - Getting from JENDL-4 (nu-bar, fission neutron spectra, MT=151, MF=31)
Cross section

\[^{237}\text{Np}(n,\text{tot}) \]

\[^{237}\text{Np}(n,\text{el}) \]

\[^{240}\text{Pu}(n,\text{tot}) \]

\[^{240}\text{Pu}(n,\text{el}) \]
Cross section

- $^{237}\text{Np}(n,\gamma)$
 - ENDF/B-VII.0
 - JEFF-3.1
 - JENDL-4
 - present

- $^{240}\text{Pu}(n,\gamma)$
 - ENDF/B-VII.0
 - JEFF-3.1
 - JENDL-4
 - present

- $^{237}\text{Np}(n,\text{inl})$
 - ENDF/B-VII.0
 - JEFF-3.1
 - JENDL-4
 - present

- $^{240}\text{Pu}(n,\text{inl})$
 - ENDF/B-VII.0
 - JEFF-3.1
 - JENDL-4
 - present
Cross section

- $^{237}\text{Np}(n,2n)$
- $^{237}\text{Np}(n,3n)$
- $^{240}\text{Pu}(n,2n)$
- $^{240}\text{Pu}(n,3n)$
Cross section

237Np(n,f)

240Pu(n,f)

Cross Section (barns)

Incident Energy (MeV)

Endo-IV.0, JEFF-3.1, JENDL-4, present

1985 Alft
1994 Wu Jingxia
1994 Garlea
1994 Garlea
1982 Canice
1981 Alft
1979 Grady
1966 White
1977 Aknazov
1973 Kobayashi
1972 Jiacolletti
1970 Brown
1971 Merla
1967 Grundl
1966 White
1963 Pankratov

1985 Alft
1994 Wu Jingxia
1994 Garlea
1994 Garlea
1982 Canice
1981 Alft
1979 Grady
1966 White
1977 Aknazov
1973 Kobayashi
1972 Jiacolletti
1970 Brown
1971 Merla
1967 Grundl
1966 White
1963 Pankratov

1985 Alft
1994 Wu Jingxia
1994 Garlea
1994 Garlea
1982 Canice
1981 Alft
1979 Grady
1966 White
1977 Aknazov
1973 Kobayashi
1972 Jiacolletti
1970 Brown
1971 Merla
1967 Grundl
1966 White
1963 Pankratov

237Np(n,f)

240Pu(n,f)
Cross section

n + $^{\text{odd}}$Cm

Cross Section (barns)

Incident Energy (MeV)

n + $^{\text{even}}$Cm

Cross Section (barns)

Incident Energy (MeV)
Uncertainties for cross sections with measurement

237Np(n,tot)

- Present
- 1998 Faikov-Stanczyk
- 1998 Grigog’ev
- 1997 Kornilov
- 1997 Lychagin
- 1984 Auchampaugh

240Pu(n,tot)

- Present
- 1983 Poenitz
- 1981 Poenitz
- 1972 Smith

240Pu(n,γ)

- Present
- 1977 Weston

237Np(n,γ)

- Present
- 2008 Esch
- 1988 Buleeva
- 1987 Trofimov
- 1983 Trofimov
- 1981 Weston
- 1976 Lindner
- 1987 Stupelia
Uncertainties for cross sections with measurement

237Np(n,f)

237Np(n,2n)

240Pu(n,f)

240Pu(n,\text{inl}_{MT=52})
Correlation

Covariance data of (n,f) for 237Np and 240Pu
Correlation

Covariance data of (n,g) for 237Np and 240Pu
Sensitivity and Uncertainty Analysis of k_{eff}

- **Data preparation**
 - NJOY99/TRANSX
 - Reference data: JENDL-3.3
 - Energy group: SCALE 44-group

- **Forward/adjoint flux distribution**
 - DANTSYS
 - P_3-S_{16} approximation

- **S&U analysis of k_{eff}**
 - SUSD3D
 - Total fission (MT=18) and total ν (MT=452 or MT=455+456) covariance data
 - Covariance data: JENDL-3.3, Low-fidelity, New covariance data
Fictitious critical system searched by JENDL-3.3-based DANTSYS calculation

<table>
<thead>
<tr>
<th>No.</th>
<th>Actinide</th>
<th>Critical Radius (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>92-U-233</td>
<td>5.72</td>
</tr>
<tr>
<td>2</td>
<td>92-U-235</td>
<td>8.25</td>
</tr>
<tr>
<td>3</td>
<td>93-Np-237</td>
<td>9.20</td>
</tr>
<tr>
<td>4</td>
<td>94-Pu-239</td>
<td>4.95</td>
</tr>
<tr>
<td>5</td>
<td>94-Pu-240</td>
<td>7.24</td>
</tr>
<tr>
<td>6</td>
<td>94-Pu-241</td>
<td>5.20</td>
</tr>
<tr>
<td>7</td>
<td>95-Am-241</td>
<td>11.33</td>
</tr>
<tr>
<td>8</td>
<td>95-Am-243</td>
<td>15.54</td>
</tr>
</tbody>
</table>

✓ Total uncertainties: ~2.5% for 240Pu-, 241Am-, and 243Am-fictitious cores due to large uncertainties in
 ✓ total nu covariance data
 ✓ total fission covariance data
 ✓ capture covariance data
Large total k_{eff} uncertainty for Lo-Fi 237Np: caused by large fission data.

KAERI/ORNL covariance brings about nearly the same total k_{eff} uncertainty estimation as JENDL-4.0.

- underestimate total fission
- overestimate inelastic scattering

Large total k_{eff} uncertainty for Lo-Fi 240Pu: caused by large fission and total nu data.

Total uncertainty with KAERI/ORNL covariance is comparable to those with JENDL-4.0.

- slight increase of total fission
SUMMARY : Nuclear Data Evaluation and Covariances for 237Np, 240Pu and Cm isotopes:

- We produced neutron cross section files of 237Np, 240Pu and $^{240-250}$Cm for AFC applications and safeguards.
- Covariance matrices of cross sections were generated by the EMPIRE-KALMAN module considering sensitivity matrices from model calculations and the uncertainty of experimental data.
- Fictitious system was constructed and used for validation of our covariances.

- Further works
 - Covariance files for all curium will be produced
 - Covariances for angular distributions and average nu-bar will be added.
Pohang neutron facility
Pohang Neutron Facility

Pohang Accelerator Laboratory

Pohang Neutron Facility based on 100-MeV e-linac

Pohang High Energy Radiation Facility with 2.5 GeV e-linac
Neutron Total Cross Section Measurement using n_TOF

- Pohang Pulsed Neutron Facility (PNF)
 1) Electron Linear Accelerator, 2) Target System
 3) TOF Experimental Hall, 4) Data Acquisition System

100 MeV LINAC

Sample changer

Detector

Target room

Water moderator

Ta target
Neutron Total Cross Sections

Recent Publications

In progress

- Measurements of neutron total cross-sections and resonance parameters of Dy at the Pohang Neutron Facility
Photonuclear reactions with Bremsstrahlung

- **Recent publications**
 - Isomeric yield ratios in the photoproduction of 52m,gMn from natural iron using 50-, 60-, 70-MeV, and 2.5-GeV bremsstrahlung, J. Radioanal Nucl. Chem. 283 (2010) 683-690.
 - Measurement of isomeric-yield ratios for the 197Au(γ,n)196m,gAu reactions induced by bremsstrahlung, J. Radioanal Nucl. Chem. 283 (2010) 519-525.
Development of Detector System for Capture C.S

- Layout of detectors: setup1: 98.25%, setup2: 98.21%
- Assembling

PMT: Hamamatsu Photomultiplier (H7195)
Data Acquisition System of TOF with FADC

- Widen neutron energy range: 0.1 - 수백 eV → 0.01 eV – keV
- will be used for neutron capture cross section measurement
KIGAM neutron facility
Neutron facility

- KIGAM 1.7 MV tandem accelerator
- Beam bunching system (self-made)

RF amplifier

Time-pick-up module

TOF system

Neutron beam line

SNCIS

Beam pulsing system
Beam pulsing system by RF field and double bunching system

1) Beam size : 8 mm below
2) Bunching beam width : 1 ~ 2 ns
3) Bunching yield : <10 %
4) Bunch repetition rate : 8 MHz

Check of bunching beam width by \((p,\gamma)\) reaction
KIGAM neutron source for nuclear data production

2007: 3T(p,n) reaction: ~ 2 MeV,
2008: 7Li(p,n) reaction 500 keV ~ 1.2 MeV,
2009: D-D reaction 3.5 MeV ~ 6.2 MeV,
2010: D-Li reaction 17 MeV
influence: 10^6~10^7 neutrons /sec at 0°

7Li(p,n) on Thin target:
0.5 MeV neutron with energy spread of 50 keV

7Li(p,n) on Thick target:
1.2 MeV neutron with energy spread of 500 keV

3T(p,n) on Thin target:
2.15 MeV neutron with energy spread of 180 keV

7Li(p,n) on Thin target:
0.5 MeV neutron with energy spread of 50 keV

7Li(p,n) on Thick target:
1.2 MeV neutron with energy spread of 500 keV

3T(p,n) on Thin target:
2.15 MeV neutron with energy spread of 180 keV

2D(d,n) on Thin target:
3.5~6.2 MeV neutron with energy spread of ≤ 230 keV
Neutron total cross sections of Ti [barn]

- ENDF-6
- CENDL-2
- KIGAM

Neutron total cross section of SiO$_2$ [barn]

- KIGAM : 2010
- Perey : 1972

Neutron total cross section of Si [barn]

- Harvey : 1977
- Filippov : 1968
- ENDF-6.8
- KIGAM : 2010

Nuclear data by KIGAM facility
KAERI neutron facility (in design)
KAERI Electron Accelerator

- Beam applications
 - Development of materials
 - Environment
 - Irradiation Test

- Accelerator Specifications

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>17 MeV</td>
</tr>
<tr>
<td>RF Power</td>
<td>Max. 100 kW</td>
</tr>
<tr>
<td>Pulse Width</td>
<td>~ 20 ps</td>
</tr>
<tr>
<td>Pulse Current</td>
<td>~ 20 A</td>
</tr>
<tr>
<td>Pulse Frequency</td>
<td>Max. 2 MHz</td>
</tr>
<tr>
<td>Beam Power</td>
<td>Max. 14 kW</td>
</tr>
</tbody>
</table>
Pulse Beam Characteristics for Neutron TOF

Electron Beam

Neutron Beam

- Thermal neutron: frequency of a few hundreds Hz → beam power of a few W
- Fast neutron (20 keV< E <10 MeV): frequency of 0.5 MHz → beam power of 4 kW
- Things to work out in using fast neutrons
 1) Energy resolution
 2) Pulse overlapping
 3) Target cooling
Neutron Energy Resolution

Neutron energy \(E \) is measured by flight time \(t \) (flight length \(L \))

\[
E(eV) = \left(72.3 \times \frac{L(m)}{t(\mu \text{sec})}\right)^2
\]

\[
\frac{\Delta E}{E} = 2 \frac{\Delta t}{t} = 0.02766 \left(\frac{\Delta t(\mu \text{sec})}{L(m)}\right)\sqrt{E(eV)}
\]

\[
\Delta t = \sqrt{\Delta t_1^2 + \Delta t_2^2 + \Delta t_3^2}
\]

\(\Delta t_1 \): Electron Beam Pulse Width
\(\Delta t_2 \): Target Scattering
\(\Delta t_3 \): Detector & DAQ

Better energy resolution: Decreasing \(\Delta t \) or increasing \(L \)

Increasing \(L \) → Decreasing neutron flux, therefore try to decrease \(\Delta t \)

Energy resolution < 1% at \(L=5\sim10 \text{ m} \), \(E=1 \text{ MeV} \)

→ \(\Delta t \) should be less than 1 ns
Neutron Source Target Requirements

- $\Delta t = \sqrt{\Delta t_1^2 + \Delta t_2^2 + \Delta t_3^2}$ ($\Delta t_1 = 20$ psec, Δt_3 : a few hundreds psec is possible)
- To make Δt_2 a few hundreds psec
 - Beam diameter (~5 mm), beam penetration depth (~1 cm)
- Heat deposition rate (~20 kw/cm3)
- Liquid metal target is required for the effective cooling of target
- Possible liquid target material : Pb, Pb–Bi, Hg
 - Pb is better considering toxic problems
- Reference Liquid Pb target : FZD (Forschungzentrum Dresden–Rossendorf)
 - KAERI is developing a similar target
Neutron Source Target

- Developed by FZD
 (Height: ~ 2 m, Weight: ~ 500 kg)
- Liquid Pb target: Small volume is possible

Expansion Tank

Beam Irradiation Area (Mo Pipe)

Sump Tank

Heat Exchanger

Electromagnetic Pump

Flow Meter
Neutron Production Simulation by MCNPX

- MCNPX 2.5.0 was used to simulate neutron production
- Pb target has a rectangular shape: Width 2cm
 - Pb is surrounded by Mo of which thickness is 0.5 mm
- Electron beam was assumed to be uniform with a diameter of 1 cm
- Electron beam energy was varied from 17 MeV to 65 MeV
- Target depth was varied from 0.2 cm to 1.8 cm

Simulation was performed to study:
 - Neutron production rate and energy spectrum
 - Photon production rate and energy spectrum
 - Heat deposition in the target
Neutron and Gamma Production (1)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb Target</td>
<td>2 cm x 1 cm x 2 cm</td>
</tr>
<tr>
<td>Mo Tube</td>
<td>Thickness 0.05 cm</td>
</tr>
<tr>
<td>Beam Shape</td>
<td>Diameter 1 cm</td>
</tr>
<tr>
<td>Beam Power</td>
<td>17 MeV, 1.4 kW</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutron Yield</td>
<td>3.5×10^{11} s$^{-1}$</td>
</tr>
<tr>
<td>Gamma Yield</td>
<td>1.2×10^{15} s$^{-1}$</td>
</tr>
<tr>
<td>Neutron Flux</td>
<td>1.1×10^5 cm$^{-2}$s$^{-1}$</td>
</tr>
<tr>
<td>(5 m in x–direction)</td>
<td></td>
</tr>
<tr>
<td>Gamma Flux</td>
<td>2.2×10^8 cm$^{-2}$s$^{-1}$</td>
</tr>
<tr>
<td>(5 m in x–direction)</td>
<td></td>
</tr>
<tr>
<td>Gamma Flux</td>
<td>7.1×10^9 cm$^{-2}$s$^{-1}$</td>
</tr>
<tr>
<td>(5 m in y–direction)</td>
<td></td>
</tr>
</tbody>
</table>
Neutron and Gamma Production (2)

- Neutron production vs Target Depth/Beam Energy

Energy spectrum

- Neutron Energy spectrum
- Gamma (y direction) Energy spectrum
- Gamma (x direction) Energy spectrum
Thermal-hydraulic Analysis of Target (1)

- Heat Calculation: MCNPX, 17 MeV, 4 kW, Beam Diameter=1 cm

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m/s</td>
<td>500°C</td>
<td>472°C</td>
<td>414°C</td>
</tr>
<tr>
<td>2 m/s</td>
<td>467°C</td>
<td>440°C</td>
<td>407°C</td>
</tr>
</tbody>
</table>

- Heat Thermal-Hydraulic Analysis: CFX, Inlet $T=400^\circ C$, Inlet $V=1-2$ m/s
Thermal-hydraulic Analysis of Target (2)

Target Cross-section

Mo

Pb

Velocity 1 m/s

Velocity 2 m/s
Neutron Pulse Overlapping

- Neutron pulse overlapping problem can be improved by using PE and Cd slabs in the collimator.
- 0.5 MHz frequency (E>20 keV) case: Signal-to-background ratio becomes 10^5.

* Reference: FZD Pb Liquid Target neutron TOF System
KAERI TOF Neutron System: Plan for Stage 1

Energy
- 17 MeV

Pulse Frequency
- ~ 200 kHz

Beam Power
- ~ 1.4 kW

Neutron Yield
- $3.5 \times 10^{11} \text{ s}^{-1}$

Flight Length
- ~ 10 m

Energy Resolution
- < 1% (at 1 MeV)
KAERI TOF Neutron System : Plan for Phase 2

- Electron energy 30 MeV with increased current, target located in a separate target room
- Collimator is located between target room and experimental room
Summary: Design of Neutron Production Target for KAERI TOF Facility

- KAERI electron accelerator can be used for neutron data measurements
 - Energy 17 MeV, max. beam power 14 kW, pulse beam width 20 ps
- High heat deposition rate (~20 kw/cm³) → Liquid Pb target
- KAERI is developing a liquid Pb target with the cooperation of FZD
- Simulation study was performed to investigate neutron production by MCNPX
- Thermal–hydraulic calculation was performed by CFX
- Frequency 0.5 MHz → Neutron energy > 20 keV
- Phase 1: Electron energy 17 MeV, target is located in the accelerator room
- Phase 2: Electron energy 30 MeV with increased current, target is located in a separate target room
Nuclear Data Activities Relevant to ADS (2)

- Nuclear Data Evaluation and Covariances for 237Np, 240Pu and Cm isotopes

- Design of Neutron Production Target for KAERI TOF Facility

- Nuclear Data Measurements at KoRIA
Nuclear Data Measurements at KoRIA (Conceptual Design)
Korea Rare Isotope Accelerator (KoRIA)

Researches of basic and applied science with stable and unstable isotopes

- ISOL + IFF + ISOL
- In-Flight
- ISOL Target/IS
- Atomic Trap
- Low energy facilities
- Future extension

- Medical sciences
 - Advanced therapy technology

- Nuclear Astrophysics
 - Origin of nuclei
 - Paths of nucleosynthesis
 - Neutron stars and supernovae

- Bio sciences
 - Study the mutation of DNA

- Material science
 - New materials
 - Properties of materials
 - Dynamic image in nm scale

- Atomic physics
 - Standard model test
 - Fundamental conservation law

- Nuclear data by fast neutrons
 - Future nuclear energy
 - Radioactive waste transmutation

- Nuclear Physics
 - Exotic nuclei near the neutron drip line
 - Unknown isotopes as super heavy elements (ex: Koreanium)
 - Equation of state (EOS) of nuclear matter

Prepared by prof. S.W. Hong & prof. Y.K. Kim of KoRIA project
Nuclear Data Research Topics in KoRIA

Topic 1
- p, d
- Li, Be, ..
- Fast neutrons
- Fast neutron data & fusion applications

Topic 2
- p
- W, Ta, Pb, U
- Spallation neutrons
- Neutron data for GEN-VI & future system
- Short-lived (Rare) Isotopes
- Neutron data for waste transmutation
- IFF, ISOL
- RIB
- Neutron C.S.

Topic 3
- W, Ta, Pb, U
- p, d
- Inverse kinematics
- Improve nuclear reaction models
- d, t, He, ..
- U, Pu, Np, Cm
- Surrogate reactions
- Neutron data for ultra short-lived isotopes
Beam Requirements for Research Topics

● Topic 1: Cyclotron beam
 ▪ *p* (70 MeV, 1 mA), *d* (35 MeV, 300 µA) for fast neutron production
 (*p*→Mono-energy neutron production, *d*→Broad spectrum neutron production)
 ▪ CW and pulse beams
 ▪ Pulse beam: pulse width 1ns, repetition rate 1 kHz-1 MHz

● Topic 2: Linac beam (400 kW)
 ▪ *p* (600 MeV, 0.66 mA) for spallation neutron production
 ▪ Pulse beams (Basic repetition rate 70 MHz)
 ▪ Pulse beam: pulse width 1ns, repetition rate 100-500 kHz
 (Average current is proportional to repetition rate)

● Topic 3: Linac beam
 ▪ **Inverse kinematics**
 - Actinide ion beam (2-10 MeV/u), spallation target material beam (a few hundreds MeV)
 ▪ **Surrogate reaction**
 - 20-60 MeV *p*, *d*, *t*, He-3, He-4
Experimental Program with TOF at KoRIA

Capture measurements

<table>
<thead>
<tr>
<th>Isotopes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo, Ru, Pd stable isotopes</td>
<td>Calculation of r-process residuals Isotopic patterns in SiC grains</td>
</tr>
<tr>
<td>Fe, Ni, Zn, Se, Zr stable isotopes</td>
<td>S-process nucleosynthesis in massive stars Accurate nuclear data needs for structural materials</td>
</tr>
<tr>
<td>A~150</td>
<td>S-process branching points Long-lived fission products</td>
</tr>
<tr>
<td>233,234,236U, 231,233Pa, 232Th</td>
<td>Th/U nuclear fuel cycle</td>
</tr>
<tr>
<td>234,235,236U</td>
<td>Standards, conventional U/Pu fuel cycle</td>
</tr>
<tr>
<td>239,240,242Pu, 241,243Am, 245Cm</td>
<td>Incineration of minor actinides</td>
</tr>
</tbody>
</table>

Fission measurements

<table>
<thead>
<tr>
<th>Isotopes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>237Np, 231Pa, 240,241,242Pu, 241,243Am, 244,245Cm</td>
<td>Fission cross-section data for minor actinides</td>
</tr>
<tr>
<td>235U(n,f)</td>
<td>New 235U(n,f) cross-section standard</td>
</tr>
<tr>
<td>232Th, 233,234,235,236,238U</td>
<td>Th/U fuel cycle and transmutation</td>
</tr>
<tr>
<td>Various nuclides</td>
<td>Fission fragments angular and mass distribution</td>
</tr>
<tr>
<td>234U(n,f)</td>
<td>Study of vibrational resonances at the fission barrier</td>
</tr>
</tbody>
</table>
Experimental Hall and Beam Line for Topic 1

- Experimental hall for the measurements of fast neutron reaction data
 - Cyclotron beam is used to produce fast neutrons
 - Beam line: p/d beam line + neutron production target + collimator/duct
 - d+thick Li/Be/C target: Two neutron beam lines for TOF method (0°, 30°)
 - p+thin Li target: Proton deflecting magnet and beam dump
 - TOF resolution at 70 m: 10 MeV neutron $\Delta E/E = 0.2\%$ (assuming detector $\Delta t = 1$ ns)
Fast Neutron Production of Thick Target

- **Conceptual design of thick target**
 - Broad spectrum fast neutron production: Thick target of C, Be, Li (d beam)
 - Beam power 1-2 kW: Water-cooled Cu backing Be target
 - High beam power: Rotating Be/C or liquid Li target similar to IFMIF target

- **Heat deposition calculation**
 - Beam diameter 3 mm, target 4 cm x 4 cm, 35 MeV d beam, C/Be/Li target.
 - Heat deposition result → Input of CFX, ANSYS for cooling calculation
Estimation of TOF Neutron Output (@35 MeV)

Simulation results with 1 m TOF collimator tube (2 cm diameter) :
- At the end of the collimator, the neutron passage is $\sim 10^{-6} \text{n/deuteron}$.
- We estimate $\sim 10^{-10} \text{n/deuteron}$ at 100 m from the inverse square law.

- 35 MeV deuteronson a lithium target can produce
 fast neutrons of the energy up to ~ 30 MeV.
- 0.1 mA of the deuteron beam will guarantee
 - $> 10^4$ n/s at the end of the 100 m TOF line.
Neutron Spectrum of Thick Target

- Neutron spectrum calculated for thick target for 35 MeV d beam
 - Spectrum of neutrons produced at Be target (PHITS code)
 - Target thickness: 1 cm
Detection System for Producing Nuclear Data

- **Design approach**
 - Investigation of international detection system (CERN, GELINA etc.)
 - Design of flux monitor, total cross section detection system, capture cross section detection system, inelastic cross section detection system and fission cross section detection system

- **Neutron flux measurement system:**
 1) \((n,f)\) detector: use of U-235, efficiency of 0.854
 2) Micro-Megas system: use of B-10 and U-235 for measurement of neutron beam shape
 3) Silicon Monitor: use of \(^6\text{Li} (n,\alpha)\) reaction

PTB \((n,f)\) detector
Uranium mass (201.4 mg) and detection efficiency (0.954) known within 0.5%.

- Ta window (0.15 mm)
- Five \(^{235}\text{U}\) deposits
- Ta electrodes
- Pt backings

MicroMegas (MGAS)
Transparent detector for charged particles equipped with \(^{10}\text{B}\) and \(^{235}\text{U}\) converters.

Silicon Monitor (SiMon)
Four silicon detectors looking at a 200 \(\mu\text{g/cm}^2\) \(^6\text{Li}\) foil. Well known efficiency below \(~1-10\) keV.
A. **Total cross section**:
 1) 25m and 70m flight length and plastic detector: time resolution < 10^{-3}

B. **Capture cross section**:
 1) 12 C_{6}D_{6} detector and use of weighting technique,
 2) 40 or 160 BaF_{2} ball detector (assuming)

C. **Elastic cross section**: plastic detector and TOF system

D. **Inelastic cross section**: (n,n'\gamma) reaction: 4 HP Ge detector and TOF system

E. **Fission cross section**: use of Fission ionization Chamber

F. **Neutron flux monitor**: Fission ionization chamber

* **Use of coincidence measurement system** of capture cross section and total cross section

* **Construction of 5 parameter detecting system**:
 TOF signal,
 Capture cross section TOF signal,
 Pulse height signal, Elastic scattering TOF signal or Fission particle signal,
 neutron flux signal.
Nuclear Data Activities: SUMMARY

- KERCEN code in development for resonance region
- Evaluation and covariance for 237Np, 240Pu and Cm isotopes:
 - KAERI-ORNL collaboration
 - Advance Fuel Cycle (AFC), Safeguards, Fast System etc

- Pohang Neutron Facility (eV)
- KIGAM Neutron Facility (a few MeV)

- Design of Neutron Production Target for KAERI TOF Facility
 - Fast neutrons with energy greater than ~ 100 keV

- Nuclear Data Measurements at KoRIA
 - Fast neutron data for fusion, GEN-VI and ADS
 - Charged particles for Inverse kinematics and surrogate reactions
 (needed in ADS and Transmutation)