MASS AND CHARGE STUDIES IN NEUTRON AND PHOTON (BREMSSTRAHLUNG) INDUCED FISSION OF ACTINIDES AND PRE-ACTINIDES

BY

H. NAIK RADIOCHEMISTRY DIVISION, BARC, TROMBAY, MUMBAI, INDIA – 400085

MAIN TOPIC OF THE TALK

(A) MEASUREMENTS OF FISSION PRODUCTS YIELDS IN LOW ENERGY AND 14.7 MEV NEUTRON INDUCED FISSION OFACTINIDES USING
REACTOR APSARA AND CIRUS AT BARC, MUMBAI AND #14.7 NEUTRON GENERATOR AT DEPARTMENT. OF PHYSICS, PUNE UNIVERSITY.

(B) MEASUREMENTS OF FISSION PRODUCTS YIELDS IN PHOTON (i.e. BREMSSTRAHLUNG) INDUCED FISSION OF ACTINIDES AND PRE-ACTINIDES USING
#8-10 MEV MICROTRON AT MANGALORE AND ELECTRON LINAC AT KHARGHAR.
#2.5 GEV, 100 MEV ELECTRON LINAC AT POHANG, SOUTH KOREA.

NEUTRON INDUCED FISSION

HISTORICAL

- •Discovery of neutron by Chadwick in 1932
- •Discovery of artificial radioactivity by Curie and Joliot in 1934
- •Transmutation of element by Fermi and coworkers in 1934. Uranium as target to get trans-uranium element.
- Hahn and Strassmann as well as Curie and Savitch in 1937 independently took special interest to separate the radioactive element.
- •Ba as carrier they separate the isotope believed to be radium from $238U(n,2\alpha)$ reaction and their decay.
- *Fractional crystallization indicates the activity is isotope of Ba not the isotope of Ra.
- *This finding leads to discovery of fission in 1939.
- •Meitner and Frisch in 1939 name the new type nuclear reaction as nuclear fission similar to cell division.

PROCESS OF NUCLEAR FISSION

- *Heavy nuclei A>200 (actinides) elements are deformed in their ground state due to inherent Columbic instability *Repulsive Coulomb force destabilizes the nucleus *Attractive nuclear force (analogous to surface tension) opposes Interplay of of these two forces causes spontaneous fission •Or fission of compound nucleus after neutron absorption •In the fission about 200 MeV energy is released. •In 1939 Frich proved the energy release by the large pulse height in ionization chamber experiment.
- •Bohr in 1939 theoretically calculated the energy release of 200 MeV considering nucleus as liquid drop.

 235 U + n \rightarrow 236 U^{*} \rightarrow Two Fission Products

Energy Release in Fission = Δmc^2 , $\Delta m=M(^{236}U)$ - M(2 Products)

200 MeV = 168 MeV (K.E.) + 8 MeV (prompt neutron)+ + 7 MeV (prompt gamma) + 8 MeV (beta) + 12 MeV (neutrino) +7 MeV (gamma)

NUCLEAR FISSION OF ACTINIDES OR PRE-ACTINIDES IS POSSIBLE BY THE BOMBARDMENT OF TARGET

ACTINIDES - (227Ac, 232Th, 231Pa, 232,238U, 238,240Pu, 241,243Am) (227,229Th, 233,235U, 238Np, 239,241Pu, 242Am, 245Cm, 249,251Cf, 255Fm)

PHOTON (BREMSSTRAHLUNG) ENERGY ABOVE 6 MeV – NO BARRIER

LOW AND HIGH ENERGY NEUTRON – NO BARRIER

PRE-ACTINIDES (197Au, nat-Pb, 209Bi – Fission barrier ~20-25 MeV

\$ CHARGE PARTICLE (¹H, α (⁴He), charge particle (e.g. ¹⁴N, ¹⁶O etc.) FACED COULOMB BARRIER (E_c)

 $E_c = Z_1 Z_2 e^2 / r_0 (A_1^{1/3} + A_2^{1/3}), \quad {}^{238}U + {}^{1}H, E_c = 12.5 \text{ MeV}, {}^{238}U + \alpha, E_c = 25 \text{ MeV}$

\$ HIGH ENERGY ELECTRON (GeV)

ALTERNATELY # SPONTANEOUS FISSION OF HIGH-Z ACTINIDES (244-Cm, 252-Cf, 256-Fm) DUE TO INHERRENT COULOMB INSTABILITY.

NUCLEAR DATA AND ITS IMPORTANCE

*Nuclear data such as neutron capture cross sections, fission cross section, fission yields and decay data including halflives, decay energy, branching ratios etc. are required for many reactor calculations e.g. reactor design, handling and safety point of view.

*Some of the data on capture cross-section and fission cross section are available in literature.

*Major fission yields data are available in thermal neutron fission of actinides.

- Fission yields data in fast neutron fission for minor actinides are less available due to the rare availability of such actinides.

IMPORTANCE OF FISSION & YIELDS OF FISSION PRODUCTS

- In fission large amount of energy (~ 200 MeV) and large number (~2000) of fission products are produced.
- Peaceful use of the energy
- Conventional power reactor to produce electricity BWR, PHWR (235U, 239Pu +238U), AHWR (233U +232Th) ADS (Spallation source nat-Pb, 209Bi, 232Th, 238U, Incinerating long-lived minor actinides 237Np, 240Pu, 241Am, 243Am, 244Cm and 245Cm)
- *Research reactor to produce radioisotopes for medical, industrial and agricultural applications.
- Yields of short-lived fission products are important for decay heat calculation, which are needed for design of reactor.
 To explain the fission mechanism and physics of nuclear fission by studying kinetic energy, mass, charge, fragment angular momentum and angular distribution of fission products.

*Fission Yields (FY) data are necessary for modern reactor design and fuel handling.

- *FY of ^{229,232}Th, ^{231,233}Pa & ^{232,233}U for AHWR, KAMINI *FY of ^{235,238}U, ²³⁷Np & ^{238,239,240,241}Pu for PHWR, BWR, and CANDU.
- *Waste management and burning of minor actinides ²³⁷Np, ^{238,240}Pu, ^{241,243}Am, ^{244,245}Cm using ADS.
- *Fission Yields data are important for mass/charge and fragment angular momentum studies. Such studies provide information on:
- (i) effect of nuclear structure such as shell closure proximity and odd-even effect.
- (ii) dynamics of descent from the saddle to point of neck formation and from the latter to the scission point.

NEED OF FY IN ^{229,232}Th (n,f) AND ^{232,233}U (n,f)

FP FP FP $(n_{f}, f)^{\uparrow} 0.64 b$ β β $(n_{th}, f)^{\uparrow} 530 b \alpha$ $(n_{th}, f)^{\uparrow} 30 b$ ²³²Th $(n_{th},\gamma) \rightarrow$ ²³³Th \rightarrow ²³³Pa \rightarrow ²³³U \rightarrow ²²⁹Th \rightarrow 1.405x10¹⁰ y 22.3 m 26.967 d 1.592x10⁵ y 7340 y β \downarrow (n,2n) α \downarrow (n,2n) ²³¹Th \rightarrow ²³¹Pa (n_{th}, γ) \rightarrow ²³²Pa \rightarrow ²³²U ---- \rightarrow ²²⁸Th \rightarrow 25.52 h 32760 y 1.31 d 68.9 y 1.9116 y $(n_{th}, f) \downarrow 74b$ $(n_{f},f) \downarrow 4.61b$ FP FP

FP =Fission Products formed in neutron induced fission of Th and U.

NEED OF FY IN ^{235,238}U(n,f) AND ^{238,239}Pu (n,f) FP FP FP $(n_{th}, f)^{\uparrow}746 b \quad (n_{th}, f)^{\uparrow}584 b$ (n_{f}, f) 2.02 b 238 U (n_{th}, γ) \rightarrow 239 U \rightarrow 239 Np \rightarrow 239 Pu \rightarrow 235 U \rightarrow 4.468x10¹⁰ y 23.45 m 2.3565 d 24110 y 7.038x10⁶ y \downarrow (n,2n) \downarrow (n,2n) $^{237}U \rightarrow ^{237}Np \rightarrow ^{237}Pu (n_{th},\gamma) \rightarrow ^{238}Pu \rightarrow ^{234}U \rightarrow$ 6.75 d 2.144x10⁵ y 45.2 d 87.7 y 2.455x10⁵ y $(n_{th}, f) \downarrow 17.9b$ $(n_{f},f) \downarrow 6.36b$ FP FP

FP=Fission Products formed in neutron induced fission of U and Pu.

THEORETICAL MODEL (LIQUID DROP MODEL)
*Bohr and Wheeler – Nucleus as charge liquid drop
*Existence of potential energy surface based on
*Changes in the Coulomb and surface energy as a function of deformation (α) of the fissioning nucleus

 $R(\theta) = R_0 / \lambda \left[1 + \alpha_n P_n (\cos\theta)\right]$

Es = Es(0) [1 + 2/5 α_2^2] Ec = Ec(0) [1 - 1/5 α_2^2]

 $Es(0) = 17.94 [1-1.7826{(A-2Z)/A}^2]A^{2/3} MeV$ $Ec(0) = 0.71 Z^2 / A^{1/3} MeV$

Fig. 1. Liquid drop model barriers for different fissility parameters (X)

STRUTINSKY HYBRID MODEL AND WILKINS STATIC MODEL AT SCISSION

Hybrid of LDM +Single particle model
Shell effect –deviation of uniform single particle level distribution
*Paring effect - similar as above

 $V = V_{LDM} + \Sigma(\delta U = \delta P)$

δP = Pairing energy correction calculated based on BCS theory
 I.e. Barden, Cooper and Schrieffer theory
 δU = Shell energy correction

 $\delta U = U - \hat{U} = \Sigma 2 \varepsilon_v n_v - 2 f \varepsilon g(\varepsilon) d\varepsilon$

 $\epsilon_v = \text{single particle energy}, n_v = \text{occupation number}$ g(ϵ) = uniform level density.

FISSION STUDIES

*Neutron emission curve – saw-tooth nature *Gamma and x-ray emission curve – saw- tooth nature *Kinetic energy distribution *Mass and charge distribution –symmetric or asymmetric *Fragment angular momentum *Angular distribution of fission products

MASS AND CHARGE DISTRIBUTION FROM FISSION YIELD
Division of nucleus (fission) is not always same in terms of A and Z of the resultant of fission products.
2000 fission products of A= 72-172 and Z= 31- 62.
*Mass distribution –asymmetric for actinides (Ac-Cf) fission
-symmetric for pre-actinide (Pb &Bi) and higher actinides (Fm)

*Charge distribution –even-odd effect for even-Z systems -No even-odd effect for odd-Z systems

TYPES OF FISSION YIELDS

*Independent Yield (IY)- Percentage of yield of any fission product formed from the filssioning nuclei.

*Cumulative Yield (Y_C)- Summation of the independent yield percentage of all fission products up to the nuclide of interest in a given mass chain formed from the filssioning nuclei.

*Mass chain Yield (Y_A)- Summation of the independent yield percentage of all fission products in a given mass chain formed from the filssioning nuclei.

*Charge chain Yield (Y_Z)- Summation of the independent yield percentage of all fission products for different masses of an element formed from the filssioning nuclei.

* $FCY=Y_C/Y_A$, $FIY=IY/Y_A$, $IYR=Y_h/(Y_h+Y_l)$

DECAY SCHME OF FISSION PRODUCTS 131mTe (30.0 h) \downarrow ¥ $131\text{Sn} \rightarrow 131\text{Sb} \rightarrow 131\text{gTe} \rightarrow 131\text{I} \rightarrow 131\text{Xe}$ 23.03 m 25.0 m 8.02 d stable 132Sbm (2.8m) 132Im (83.6 m) \downarrow \downarrow ¥ $132Sn \rightarrow 132Sbg \rightarrow 132Te \rightarrow 132Ig \rightarrow 132Xe$ 40.0 s 4.15 m 78.2 h 2.7 h stable 133mTe (55.4m) 133mXe \downarrow \downarrow ¥ ¥ $133Sn \rightarrow 133Sb \rightarrow 133gTe \rightarrow 133I \rightarrow 133Xe \rightarrow Cs$ 12.4 m 20.8 h 2.35 m stable 134Im (3.7 m) \downarrow ¥ $134Sb \rightarrow 134Te \rightarrow 134I \rightarrow 134Xe$ 10.22 s 41.8 m 52.6m stable 135Xem (15.6 m) \downarrow ¥ $135\text{Te} \rightarrow 135\text{I} \rightarrow 135\text{Xe} \rightarrow 135\text{Cs}$ 1.68 s 6.61 h 9.09 h stable

IMPORTANT FACTORS IN FISSION

- •Bohr shows that fission of uranium nucleus by thermal neutron was due to 235-U but not from 238-U.
- *Thermal neutron (En= 0.025 eV) fission 227,229Th, 233,235U, 238Np, 239,241Pu, 242Am 245Cm, 249Cf, 255Fm
- *Fast neutron (En> 500 keV) induced fission 232Th, 231Pa, 238U, 237Np, 240Pu, 243Am, 244Cm
- *Thermal and fast neutron neutron induced fission 232U, 238Pu, 241Am.
- *Spontaneous fission (e.g. 242,244Cm, 250,252Cf, 256Fm)
- •Half-life of actinides and Purity of samples
- *Height of outer barrier (V_B)
- *Excitation energy (E*)
- *Fission cross section (σ_f)
- *Activation cross section (σ_a)
- *Decay scheme of fission products

Nuclide	Half-life	V _B	$E_{th}-V_{B}$	$\sigma_{ m th}$	$\sigma_{\rm f}$	σ_{a}
		(MeV)	MeV	(barns)	(barns)	(barns)
229-Th	7340 y	6.5	0.294	30.81	444.1	61
232-Th	1.404x10 ¹⁰ y	6.65	-1.864	<.000025	5 0.636	7.37
231-Pa	32760 y	6.25	-0.697	0.0197	4.605	200.6
232-U	68.9 y	5.8	0.05	76.8	344.1	74.9
233-U	1.592x10 ⁵ y	5.5	1.343	529.9	772.2	45.5
235-U	7.038x10 ⁶ y	5.53	1.01	584.0	274.9	98.3
238-U	4.468x10 ⁹ y	6.16	-1.36	.000001	2.02	2.68
237-Np	2.144x10 ⁶ y	5.9	-0.41	0.0192	6.36	175.9
238-Pu	87.7 y	5.7	-0.05	17.89	52.7	540
239-Pu	24110 y	5.07	1.46	746.7	299.1	263.9
240-Pu	6564 y	5.5	-0.26	0.588	8.938	289.4
241-Pu	14.29 y	5.1	1.21	1015	590.4	358.2
241-Am	432.2 y	5.7	-0.21	3.018	13.87	600.4
243-Am	7370 y	5.6	-0.33	0.0012	7.586	3.8
244-Cm	n 18.1 y	5.0	0.52	1.037	13.22	15.1
245-Cm	n 8500 y	4.3	2.16	2001	800.7	2.63
252-Cf	2.65 y	3.6	0	-	-	-

NEUTRON SOURCES (Few examples) & NEUTRON SPECTRUM a. neutron induced fission of actinides - in reactor APSARA – neutron flux = $1.2x \ 10^{12}$ n s⁻¹ cm⁻² CIRUS – neutron flux = 5.0×10^{12} n s⁻¹ cm⁻² DHRUVA – neutron flux = $1.0x \ 10^{13}$ n s⁻¹ cm⁻² b. spontaneous fission of actinides e.g. 252 Cf (T_{1/2} = 2.65 y) – neutron flux = 2.30x 10¹² n s⁻¹ g⁻¹ c. photo neutron induced fission and reactions reaction Q-value (MeV) Actinides ((γ ,f) -3.6 to -6.7 ⁹Be(γ,n) -1.666 -2.226 $^{2}H(\gamma,n)$ y from ²⁴Na, ²⁸Al, ³⁸Cl, ⁵⁶Mn, ⁷²Ga, ⁷⁶As, ⁸⁸Y, ^{116m}In, ¹²⁴Sb, ¹⁴⁰La, ¹⁴⁴Pr from electron LINAC or MICROTRON. d. ${}^{9}Be(\alpha,n) - \alpha$ source $-{}^{210}Po$, ${}^{226}Ra$, ${}^{227}Ac$, ${}^{238,239}Pu$, ${}^{241}Am$, ${}^{242,244}Cm$, ²⁴¹Am/Be ($T_{1/2}$ = 433 y), Ea = 5.48 MeV, 70 neutrons per 10⁶ a particle 15-23 % neutron yield with $E_n < 1.5 \text{ MeV}$ e. Reaction from accelerated charged particle e.g ${}^{3}H^{,,7}L(p,n)$ or ${}^{9}Be(d,n)$ reaction Q-value (MeV) neutron energy neutron per 1 mA of D ²H(²H,n) +3.26 3 MeV 10⁹ n/s from D ³H(²H,n) +17.6 14.7 MeV 10¹¹ n/s from T

EXPERIMENTAL

ASSEMENT OF PURITY OF ACTINIDES (|) ALPHA SPECTROMETRY (II) TARGET PREPARATION (A) FOR COMPARISON METHOD (B) FOR MASS SPECTROMETRIC METHOD (C) FOR ABSOLUTE METHOD (III) IRRADIATION IN REACTOR APSARA OR CIRUS **(IV) FISSION PRODUCTS ANALYSIS** (a) DIRECT GAMMA RAY SPECTROMETRIC ANALYSIS RADIOCHEMICAL SEPARATION FOLLOWED BY BETA OR GAMMA RAY COUNTING (b) MASS SPECTROMETRIC METHOD (c) TRACK-ETCH CUM GAMMA RAY SPECTROMETRIC **METHOD**

(I) ASSESSEMENT OF PURITY AND AMOUNT OF TARGETS *Most of the actinides are alpha active.

•So assessment of purity and amount and isotopic composition of target by alpha spectrometry or mass spectrometry.

*Typical example of 240-Pu, 243-Am & 244-Cm are given below

Actinides	Isotopic composition	Composition (%)	
240-Pu	240-Pu	99.48	
	239-Pu	0.39	
	241-Pu	0.13	
	242-Pu	0.003	
243-Am	243-Am	99.998	
	241-Am	0.0016	
	242m-Am	0.00021	
244-Cm	244-Cm	99.43	
	245-Cm	0.0065	
	246-Cm	0.48	
	247-Cm	0.006	
	248-Cm	0.015	

(II) TARGET PREPARATION (A) FOR COMPARISON METHOD

- *Fission rate monitor- Nitrate solution of 235-U (1-5 µg) dried on 0.0025 cm thick AI foil and sealed in alkathene bags
 *Chosen actinides targets – metal foil or metal oxide or nitrate solution or electrodeposited targets enclosed or dried on AI foil or quartz ampoule and sealed in alkathene bags.
- -Metal or Oxide powder in quartz ampoule -232-Th (5-10 mg) -Electrodeposited targets of 227-Ac (~100 μ g), 229-Th(~30 μ g), 232-U (~10 μ g), 233-U (~10-50 μ g), 239-Pu (~10-50 μ g), 245-Cm (~2 μ g) covered with 0.0025 cm thick AI foil..
- Nitrate solution dried on quartz ampoule -231-Pa (~1 mg), 237-Np (~2 mg)

(B) FOR MASS SPECTROMETRIC METHOD

-Oxide power sealed inside quartz ampoule –238U (5-10 mg) -Nitrate solution dried and sealed inside quartz ampoule 233-U, 235-U, 239-Pu, 241-Pu - each targets 0.5 - 1 mg

(C) FOR ABSOLUTE METHOD

- *Chosen actinides targets
- -Metal oxide 238-U (5-10 mg)
- -Nitrate solution dried on silica capsule- 237-Np (0.2-10 mg), 238-Pu(3-10 µg), 239-Pu (3-10 µg), 241-Pu (3-10 µg),
- 241Am (100-900 µg), 245-Cm (2-4 µg)
- -Electrodeposited targets of 237Np (100-200 μg), 238-Pu (20 μg) 239-Pu (10-25 μg), 241-Pu (10-25 μg), 241-Am (50-100 μg), 243-Am (90 μg), 244-Cm (80-96 μg).
- *Fission rate monitor Along with the actinides targets, 100-200 µgl of dilute nitrate solution and Lexan or mica track detector taken in polypropylene tube of 4 cm long and 3 mm diameter.
- 238-U (1.42 mg/ml), 237-Np (24.56 μg/ml), 238-Pu (0.5 μg/ml), 240-Pu (5.07 μg/ml), 243-Am (26.85 μg/ml), 244-Cm (0.202μg/ml)

(III) IRRADIATION AND FISSION PRODUCTS COLLECTION

*FOR THERMAL AND 14.7 MeV NEUTRON IRRADIATION

- Targets along with fission rate monitors wrapped with 0.0025 cm thick AI foil and sealed in alkathene bags.

*FOR EPI-CADMIUM NEUTRON IRRADIATION

-Targets along with fission rate monitors covered with 0.0025 cm thick AI foil and wrapped with 1 mm thick Cd foil

* IRRADIATION AND FISSION PRODUCTS COLLECTION

- 5 min to 7 hrs irradiation of the sample by low energy neutron in reactor APSARA or 14 MeV neutron from neutron generator at department of Physics, Pune university.

- 1- 5 min irradiation in the reactor CIRUS using pneumatic carrier facility or for 15-90 days in irradiation position of the reactor

- Fission production collection by recoil catcher technique

- Cooling of irradiated target for 5 min to months depending upon the half live of nuclides of interest and technique of assessment.

ANALYSIS OF FISSION PRODUCTS

*Direct analysis of fission products

*Off-line gamma ray spectrometric technique of fission products by using HPGe detector coupled to a PC based 4K- channel analyzer.

•Radiochemical separation of fission products and beta or gamma ray counting of the fission products or

*Mass spectrometric analysis of the fission products.

*Etching of Lexan or mica track detector and counting of fission track. Some times gamma ray counting (for short lived fission products) and then etching of the track detector.

HPGe detector with PC based 4K channel analyzer

For gamma ray spectrometric technique

- 1: High-Purity Coaxial Germanium detector (HPGe), (ORTEC, Model GEM-20180-p, Serial No. 39-TP21360A);
- 2: Preamplifier (ORTEC, Model 257 P, Serial No. 501);
- 3: Amplifier (ORTEC-572);
- 4: 4-Input Multichannel Buffer, Spectrum Master-919, (ORTEC);
- 5: Computer (Maestro, GammaVision)
- 6: Bias supply (High Voltage: +2000 v) (ORTEC 659)

DECAY SCHME OF FISSION PRODUCTS

CALCULATIONS OF FISSION PRODUCTS YIELD

(A) COMPARISON METHOD

- From the photo-peak activities (Ai)x of the gamma lines of the fission products (i) in the fissioning system (X), its fission yields

(Ys)x (Ai)x / (As)x (Yi)x = R ----- (Yi)u , R = ------(Ys)u (Ai)u / (As)u

(As)x, (As)u, (Ai)x and (Ai)u are peak areas of gamma lines of standards and fission products in fissioning system of interest and in 235-U.

(Ys)x, (Ys)u, (Yi)x and (Yi)u are yields of standards and fission products in fissioning system of interest and in 235-U.

(B) MASS SPECTROMETRIC METHOD (Comparison or Absolute method)

(i) In comparison method

- * Isotopic ratio (IR) of fission products elements were determined.
- * Yields of fission product (Y) was obtained by multiplying the IR with yield of reference nuclide from literature.

(ii) In absolute method

- Absolute number of atoms of each nuclides were determined by isotope dilution technique and
- Total number fission by using a flux monitor.
- As for example 10-B/11-B ratio in BF₃ flux monitor irradiated simultaneously in the same neutron flux along with the fissioning system of interest

(C) ABSOLUTE METHOD by Track cum Gamma ray spectrometric technique

*Total number of fission (F) = $n\sigma\phi t = T_d W / K_{wet} C$

- •Gamma ray activity $(A_i) = N\sigma\Phi Ya\epsilon [1 exp (-\lambda t) exp (-\lambda T)]$
- N = Number of target atoms, W = weight of target material (g)
- σ = fission cross section (cm²), Φ = neutron flux (cm⁻² s⁻¹)
- a = gamma ray abundance, ε = efficiency of the detector
- t=irradiation time (s), T=Cooling time (s), T_d=Track density(#/cm²)
- K_{wet} = track registration efficiency in solution (cm)
- C = conc. of the target material (g cm⁻³) used for track registration

ERROR ANALYSIS

NATURE SOURCE OF ERROR % OF ERROR

(b) Systematic (i) Half-lives 1 (ii) Gamma ray abundance 2 (iii) Branching ratio (abundance) 2-5 (iv) Detector efficiency 5 (v) Precursor yields 4-5 Total (σ_s) 7-9 Upper limit (σ_t) of error in single measurement is given as

 $\sigma_{\rm T}$ = Square root of ($\sigma_{\rm R}^2 + \sigma_{\rm S}^2$) =10.5-15 %

Probable error (σ_P) in single measurement = 0.6745 σ_T = 7.4 - 9%

Pre-cissional error in (σ_0) in replicate (n) measurement = 8 – 13%

Standard error(σ_M) of mean value = σ_0 / square root of n = 5-8 %

Quoted error on yields value within 68 % confidence limit =

= Square root of $(\sigma_T^2 + \sigma_M^2) = 8.6 - 12.4 \%$

* In all the cases σ^2 are the variance.

RESULTS on Cumulative yields with errors bar are given before.

RESULTS:- Absolute yields of fission products in ²³⁸U(n_{1.9MeV},f)

S.	Nuclide	e Half	γ-ray	γ-ray	Fission proc	luct yield (%)
No.		life	energy	abunda-	Present	ENDF-VI
			(keV)	nce (%)	work	
1.	83-Br	2.39 h	529.5	1.3	0.187	0.393 ± 0.024
2.	85m-Kr	4.48 h	304.9	13.7	0.635 ± 0.206	0.740 ± 0.01
3	87-Kr	76.3 m	402.6	49.6	1.206 ± 0.121	1.617 ± 0.91
4.	88-Kr	2.84 h	196.3	26.3	2.098 ± 0.083	2.036 ± 0.04
5.	89-Rb	15.2 m	1032.1	58.0	3.052 ± 0.385	2.813 ± 0.07
			1248.1	42.6	2.888 ± 0.093	2.813 ± 0.07
6.	91-Sr	9.52 h	1024.3	33.4	4.335 ± 0.135	4.084 ± 0.11
7.	92-Sr	2.71 h	1384.1	90.0	4.410 ± 0.130	4.278 ± 0.11
8.	93-Sr	7.42 m	875.9	23.9	4.560 ± 0.091	4.933 ± 0.29
9.	93-Y	10.25 h	266.9	6.8	5.134 ± 0.348	4.936 ± 0.15
10.	94-Y	18.7 m	918.7	56.0	4.340 ± 0.257	4.639 ± 0.18
11.	95-Y	10.3 m	954.1	13.4	5.032 ± 0.061	5.150 ± 0.10
12.	95-Zr	64.02 d	756.7	54.5	4.701 ± 0.214	5.151 ± 0.03

S. Nuclide γ-ray γ-ray Fission product yield (%) Half energy abunda- Present **ENDF-VI** No. life (keV) nce (%) work 13. 97-Zr 4.48 h 304.9 13.7 6.408 ± 0.147 5.564 ± 0.078 14. 99-Mo 2.748 d 140.5 90.7 6.282±0.269 6.188 ± 0.087 739.4 7.365 ± 0.590 12.1 6.188 ± 0.087 15. 101-Mo 14.6 m 590.9 16.4 4.799 ± 0.276 6.197 ± 0.372 16. 103-Ru 39.254 d 497.1 88.7 6.124 ± 0.282 6.261 ± 0.063 17.104-Tc 18.3 m 358.0 89.0 5.237 ± 0.211 5.029 ± 0.100 46.7 18. 105-Ru 4.44 h 724.3 5.104 ± 0.314 4.058 ± 0.114 3028 660 0002+0182 $10 \ 107$ Rh 21.7 m

S. Nuclide Half γ -ray γ -ray Fission product yield (%) energy abunda- Present ENDF-VI No. life (keV) nce (%) work 0.034 ± 0.001 21. 115g-Cd 2.23 d 527.1 27.5 0.055±0.004 22. 117g-Cd 2.49 h 273.4 28.0 0.038±0.006 0.028 ± 0.013 23. 117m-Cd 3.36 h 1066.0 23.1 0.007±0.002 0.009 ± 0.004 24. 127-Sb 3.85 d 685.7 35.3 0.135 ± 0.015 0.135 ± 0.008 25. 128-Sn 59.1 m 482.3 59.0 0.278 ± 0.002 0.460 ± 0.074 26. 129-Sb 4.32 h 812.4 43.0 0.985 ± 0.130 0.945 ± 0.076 27. 131-Sb 23.03 m 943.0 44.0 3.089 ± 0.175 3.245 ± 0.195 28. 131-I 8.04 d 364.5 81.2 3.313±0.110

 3.282 ± 0.042

 $20 \ 133 \ 1 \ 208 \ h \ 5200 \ 870 \ 6755 \ + 0216$

S. Nuclide Half γ -ray γ -ray Fission product yield (%) life energy abunda- Present ENDF-VI No. (keV) nce (%) work 31. 135-I 6.55 h 1260.4 28.6 8.422 ± 0.118 6.965 ± 0.139 (8.460 ± 0.380) $1131.5 22.5 7.649 \pm 0.280 6.965 \pm 0.139$ (7.420 ± 0.380) 32.137-Xe 3.818 m 455.5 31.2 8.650±0.027 6.011 ± 0.120 33.138-Xe 14.08 m 434.5 20.3 8.924±0.721 5.675 ± 0.159 34.138-Cs 32.2 m 1435.8 76.3 11.669±0.246 5.728 ± 0.160

S. Nuclide No.	Half life	γ-ray γ energy a (keV)	/-ray abunda nce (%	Fission produc Present 6) work	cts yield (%) ENDF-VI Data
36. 140-Ba	12.75 d	537.3	24.4	5.646 ± 0.154	5.846 ± 0.058
37. 141-Ba	18.27 m	190.3	46.3	5.448 ± 0.048	5.379 ± 0.323
38. 141-Ce	32.5 d	145.4	48.4	5.107 ± 0.619	
5.379 ± 0	.108				
39. 142-Ba	10.6 m	255.2	20.6	3.899 ± 0.179	4.577 ± 0.183
40. 142 La	1.542 h	641.3	47.0	6.057 ± 0.159	4.580 ± 0.092
41. 143Ce	1.375 d	293.3	42.0	4.952 ± 0.122	4.597 ± 0.064
42. 144-Ce	284.4 d	133.5	11.1	4.568 ± 0.464	4.550 ± 0.064
43. 146-Ce	13.52 m	316.7	51.0	3.572 ± 0.225	3.426 ± 0.096
44. 147-Nd	10.98 d	531.0	13.0	2.555 ± 0.185	2.572 ± 0.051
45. 149-Pm	15.08 h	286.0	2.85	1.679	1.618 ± 0.032
46. 151-Pm	28.4 h	340.0	22.0	0.723 ± 0.018	0.795 ± 0.016
47. 153-Sm	46.7 h	103.2	28.3	0.332	0.411 ± 0.012

MASS YIELDS OF FISSION PRODUCTS IN NEUTRON INDUCED FISSION OF ACTINIDES DETERMINED IN RLG (OLD RADIOCHEMISTRY DIVISION)

ACTINIDES	TECHNIQUE	AUTHORS
232-Th (n, f)	Beta, γ-ray counting	R.H. lyer et al.
227-Ac, 231Pa, 237Np (n, f)	Beta, γ- ray counting	R. S. Iyer et al.
229-Th(n, f)	γ-ray spectrometry	R. J. Singh et al.
232-U (n, f)	γ-ray spectrometry	S. B. Manohar et al.
233,235-U, 239,241-Pu (n,f)	Mass Spectrometry	S.A. Chitamber et al.
241-Pu, 245-Cm (n,f)	γ-ray Spectrometry	A. Ramaswami et al.
238-U, 237-Np, 238,240-Pu 243-Am, 244-Cm	Track etch cum γ-ray Spectrometry	H. Naik et al. R.H. Iyer et al.

FIG.1. POST NEUTRON MASS YIELD DISTRIBUTIONS OF 238-U(n,f) AND 238-Pu(n,f).

FIG. 2. POST NEUTRON MASS YIELD DISTRIBUTIONS ON 237-Np(n,f) AND 243-Am(n,f).

Fig.2. Plot of mass chain yields vs. their mass number in ²³⁸U(n,f).

Paper-

CHARGE DISTRIBUTION

(a) Isotopic – Z fixed A changes(b) Isobaric – A fixed Z changes

FCY =
$$\int_{-\infty}^{-\infty} \int_{-\infty}^{X+0.5} \exp[-(X-X_P)^2/2\sigma^2] dX$$

Charge polarization (ΔZ) = $Z_P - Z_{UCD}$)

EOFa(X)
I Y =
$$\sum_{x=0.5}^{1} \int_{x=0.5}^{x=0.5} \exp \left[- (X - X_P)^2 / 2\sigma^2 \right] dX$$

Even-Odd factor
$$(\delta_P(\%)) = \frac{\sum Y_e - \sum Y_O}{\sum Y_e + \sum Y_O} x 100$$

SUMMARY

- 1. Mass yields distribution is asymmetric with third peak for lighter actinides.
- 2. In low energy neutron fission, fine structure in the interval of 5 mass units due to proton pairing (even-odd) effect. It decreases with increase of Coulomb parameter and neutron energy.
- Higher yields for A=133-135, 138-140 and 143-145 mass chains and their complementary is due to shell combination of 82n, 86-88n, 64-66n, 50n,p, 44p, 38p and 28p etc. Effect of shell closure proximity decreases with increase of neutron energy and Coulomb parameter.
- 4. Average A_H of 139±1 is fixed for all actinides. However, average A_L increases from lighter to heavier actinides.
- 4. A_H of 139±1 is due to average effect of spherical 82n (134±1) and deformed 88n (144±1). This is also favorable from N/Z point of view. A_H of 134±1 due to spherical 82n shell is not favorable from N/Z point of view.
- In neutron induced fission of 238-U P/V decreases from 180 at 1.9 MeV to 8-10 at 14 MeV. Decrease of P/V ratio, shell and even-odd effect from low to 14 MeV neutron fission indicates effect of excitation energy.

PHOTON (BREMSSTRAHLUNG) INDUCED FISSION (ROLE OF EXCITATION ENERGY)

MEASUREMENTS OF YIELDS OF FISSION PRODUCTS IN 2.5 GeV, 50-70 MeV AND 8-10 MeV BREMSSTRAHLUNG (PHOTON) INDUCED FISSION OF

- 1. PRE-ACTINIDES (natPb, 209Bi) AND
- 2. ACTINIDES (²³²Th, ²³⁸U AND ²⁴⁰Pu).

EXPT WITH 2500 & 50-70 MEV BREMSSTRAHLUNG WAS DONE USING 2.5 GEV AND 100 MEV ELECTRON LINAC AT POHANG ACCELERATOR LABORATORY (PAL), KOREA.

EXPERIMENT WITH 8-10 MeV BREMSSTRAHLUNG WAS DONE USING a. 8 MeV ELETRON MICROTRON AT MANGALORE AND b. 10 MEV ELECTRON LINAC OF EBC CENTER AT

KHARGHAR, MUMBAI.

PRODUCTION OF GAMMA PHOTON (BREMSSTRAHLUNG) FROM ELECTRON BEAM (MICROTRON OR ELECTRON LINAC)

-Thermo ionic source Lithium hexaborate

-Beam specification

-Electron linac energy range Beam current Pulse width Repetition rate 100 MeV 50-70MeV 100 (10-50) mA 1-2 (1.5) μs 10-12 (3.75) Hz 2.5 GeV 2.5 GeV 100-200 mA 1 ns 10 Hz

ADVANTAGE OF PHOTO-FISSION OVER NEUTRON INDUCED FISSION

Photon (bremsstrahlung) can be produced from electron LINAC. Neutron beam of good flux is available primarily from reactor.

ELECTRON LINAC

Making is easy and cheap

Does not need high security

Does not need any actinides as target and thus any country can make Electron LINAC

In photo fission of actinides production of heavier actinides is not possible no alpha activity problem

Medical isotopes from photo-fission of actinides are free from alpha contamination

REACTOR

costly and difficult to make

Need tide security arrangement

Needs actinides as fuel and thus all country can not make a reactor.

Neutron induced fission of actinides also causes neutron activation and beta decay to produce heavy actinides with high alpha activity.

There is chance of alpha contamination for medical isotopes obtained from neutron induced fission of actinides.

POHANG ACCELATOR LABORATORY

Pohang 65 MeV electron linear accelerator

Pohang 2.5 GeV electron linear accelerator

- 2.5 GeV LINAC used for the production of Synchrotron radiation and experiments related to that.
- Synchrotron radiation is <u>electromagnetic radiation</u>, similar to <u>cyclotron radiation</u>, but generated by the acceleration of <u>ultrarelativistic</u> (i.e., moving near the <u>speed of light</u>) electrons through magnetic fields. This may be achieved artificially by storage rings in a <u>synchrotron</u>, or naturally by fast moving electrons moving through magnetic fields in space. The radiation typically includes <u>infrared</u>, <u>optical</u>, <u>ultraviolet</u>, <u>x-rays</u>.

* 65 MeV LINAC used for production of Bremsstrahlung and neutrons

- Bremsstrahlung In a narrow sense, the electromagnetic radiation emitted by electrons when they pass through (Coulombic field) of matter. Charged particles radiate when accelerated, and in this case the electric fields of the atomic nuclei provide the force which accelerates the electrons. The continuous spectrum of x-rays from an x-ray tube is that of the bremsstrahlung; in addition, there is a characteristic x-ray spectrum due to excitation of the target atoms by the incident electron beam. The major energy loss of high-energy (relativistic) electrons (energy greater than about 10 MeV, depending somewhat upon material) occurs from the emission of bremsstrahlung, and this is the major source of gamma rays in a high-energy cosmic-ray shower. See also Cosmic rays; Electromagnetic radiation.
- In a broader sense, bremsstrahlung is the radiation emitted when any charged particle is accelerated by any force. To a great extent, as a source of photons in the ultraviolet and soft x-ray region for the investigation of atomic structure (particularly in solids), bremsstrahlung from x-ray tubes has been replaced by synchrotron radiation. Synchrotron radiation is an analog to bremsstrahlung, differing in that the force which accelerates the electron is a macroscopic (large-scale) magnetic field.

A spectrum of Bremsstrahlung with maximum energy of 65 MeV

Photofission cross section of 232 Th(γ ,f)

Photofission cross section of 232 Th(γ ,f)

Photofission cross section of $^{209}Bi(\gamma,f)$

Phys. Rev. Vol.179 (1969)1176

Photofission cross section of $^{209}Bi(\gamma,f)$

Nucl. Phys. Vol. 342 (1980) 37

EXPERIMENTAL

#For 2.5 GeV and 50-70 MeV bremsstrahlung radiation at PAL, Korea

-Bremsstrahlung was produced by impinging 2.5 MeV or 50-70 MeV electron beam on 1.0 mm or 0.1 mm thick W placed at a distance of 18 cm.

-74 g of 209-Bi or 12 g of nat-Pb metal foil (size 5cm x 5cm) wrapped with 0.025 mm thick AI foil and sample was placed at 12 cm distance from W.

-Irradiation was done for 3-5 hours with photon from pulsed electron beam and then cooled for 1 hour..

#For 8-10 MeV bremsstrahlung radiation from Microtron at Mangalore and electron LINAC at EBC, Kharghar, Navi-Mumbai, India.

- Bremsstrahlung was produced by impinging 8-10 MeV electron beam on1 mm thick Ta metal foil.

-2-5 g of ²³²Th or ²³⁸U metal foil of 0.025 mm thick (size 1.5 cm x 1.5cm) wrapped with 0.025 mm thick AI foil.

- 50 µg of ²⁴⁰Pu in the nitrate form was dried on similar AI foil..

-The target was kept below the tantalum foil on a suitable stand.and irradiated for 4 hour with photon from 8-10 MeV electron beam. Then cooled for 1.5 hours.

-Gamma ray counting of the fission products was done using precalibrated HPGe detector coupled to a PC based 4096 channel analyzer.

-Resolution of the detector system was 2.0 KeV at 1332.0 keV of ⁶⁰Co.

ELECTRON BEAM

-Thermo ionic source Lithium hexaborate

-Beam specification -Electron linac energy range Beam current Pulse width Repetition rate

100 MeV

50-70MeV 100 (10-50) mA 1-2 (1.5) µs 10-12 (3.75) Hz

2.5 GeV

2.5 GeV 100-200 mA 1 ns 10 Hz

HPGe gamma ray spectrometry at Pohang Neutron Facility

The HPGe gamma ray spectrometry at PNF

1: High-Purity Coaxial Germanium detector (HPGe),

(ORTEC, Model GEM-20180-p, Serial No. 39-TP21360A);

- 2: Preamplifier (ORTEC, Model 257 P, Serial No. 501);
- 3: Amplifier (ORTEC-572);
- 4: 4-Input Multichannel Buffer, Spectrum Master-919, (ORTEC);
- 5: Computer (Maestro, GammaVision)
- 6: Bias supply (High Voltage: +2000 v) (ORTEC 659)

Eu7P3T1 Eu7P3T1 , Pos.3, T1, 17/11/06, HPGe Calib.

Gamma ray spectrum of Eu -152 standard source

Fitted function:

$$\ln \varepsilon = \sum_{i=0}^{5} a_i \left(\ln E / E_0 \right)^i$$

where: ϵ is the photopeak efficiency, E is the energy of gamma rays , $E_0 = 1$ keV, a_i are the fitted parameters (table).

	a ₀	a ₁	a ₂	a ₃	a ₄	a ₅
d.1	-411.37319	315.22548	-95.08567	14.24046	-1.06305	0.03168
d.2	-417.57234	320.37942	-96.90733	14.55737	-1.09020	0.0326
d.3	-417.96005	320.38679	-96.90982	14.55779	-1.09024	0.0326
d.4	-435.20896	334.39162	-101.42241	15.25921	-1.14251	0.03408
d.5	-455.08566	354.59551	-109.53849	16.84068	-1.29183	0.03955
d.6	-488.13482	382.91111	-119.1308	18.4348	-1.42196	0.04373
d.7	-447.77322	347.36001	-106.88759	16.36013	-1.24873	0.03802
d.8	-442.22509	342.2072	-105.07934	16.04863	-1.22243	0.03715
d.9	-442.45108	342.22748	-105.086	16.04976	-1.22254	0.03716
d.10	-442.64593	342.2153	-105.0821	16.0491	-1.22251	0.03716

Photopeak efficiency of HPGe detector (ORTEC) at Pohang (dia. 3 mm)

^{1.0E05}E 10000E 1000 Counts 100 10 23.00 1137.00 2248.00 580.00 1693.00 Energy (keV) Acquired: 11/22/2006 12:41:09 PM Real Time: 86417.62 s. Live Time: 86400.00 s. File: C:\USERS\Spectra06\Exp2_06\AddOrtec\BGroundT1.Chn Detector: #5 AMSDAQ2 MCB 259 Input 1 Channels: 4096

BGroundT1 Background, 24 h, 22/11/06, HPGe ORTEC, PNF

Gamma ray spectrum of background (counting time: 24 h)

BiMD10T3 BiMD10T3, 10 min, 23/12/07, fission

Gamma ray spectrum of irradiated Bi sample

BIALD1T9 BIAID1T9, 20h, fission

Gamma ray spectrum from AI catcher

CALCULATIONS OF FISSION PRODUCTS YIELDS

From the photo-peak activities of the gamma lines, Yields of fission products
(Y) were obtained using decay equation

 $A_i = N \sigma \Phi Y a \epsilon [1 - exp (-λt) exp (-λT)]$

- N = Number of target atoms
- σ = fission cross section 1.0x10 $^{\text{-4}}$
- Φ = photon flux
- a = gamma ray abundance
- E = efficiency of the detector
- t = irradiation time
- T = Cooling ttime
- -Yields of fission products (Y) relative to fission products ¹⁰³Ru
- -Absolute yields of fission products obtained after normalizing the total yield to 200 %

CALCULATION OF EXCITATION ENERGY

-The average excitation energy (E_{exc}) of compound nucleus corresponding with end point energy (E_{e})

 $E_{exc} (E_e) = \frac{\int E N(E_e, E) \sigma(E) dE}{\int N(E_e, E) \sigma(E) dE}$

 $N(E_e, E)$ = bremsstrahlung spectra σ_f = photo-fission cross section

NUCLEAR SPECTROSCOPY DATA OF FISSION PRODUCTS AND THEIR CUMULATIVE YIELDS IN 65 MeV (γ, F) OF 209-Bi

Nuclide	Half life	γ ray energy keV	abundance (%)	Cumulative Yields (%)
⁸⁹ Zr	78.41 h	909.1	99.87	0.314 ± 0.058
⁹¹ Sr	9.5 h	1024.3	33.4	0.443 ± 0.082
⁹⁵ Zr	64.02 d	724.2	44.17	0.723 ± 0.069
		756.7	54.46	0.693 ± 0.087
⁹⁷ Zr	16.9 h	743.3	92.8	0.857 ± 0.091
⁹⁹ Mo	2.748 d	140.3	90.7	-
		739.4	12.1	0.934 ± 0.129
¹⁰³ Ru	39.254 d	497.1	88.7	1.0
¹⁰⁵ Rh	35.36 h	318.9	19.2	0.969 ± 0.013
¹¹² Ag	3.13 h	606.7	3.096	0.675 ± 0.156
		617.4	43.0	0.627 ± 0.172
¹¹³ Ag	5.37 h	298.5	10.0	0.879 ± 0.189
¹¹⁵ Cd ^g	53.46 h	336.2	45.9	0.471 ± 0.021
¹¹⁷ Cd ^m	3.36 h	1066.0	23.056	0.090 ± 0.017
¹¹⁷ Cd ^g	2.49 h	273.4	27.7	0.144 ± 0.015

Yield of fission product (%) γ -ray abundance Half life γ-ray energy (keV) Nuclide (%) Absolute Relative ⁸⁹Zr 78.41 h 909.14 99.87 0.314 ± 0.058 2.668 ± 0.493 ⁹¹Sr 9.63 h 1024.3 33.4 0.443 ± 0.082 3.764 ± 0.697 ${}^{92}Sr^{*}$ 2.71 h 1383.93 90.0 0.365 ± 0.073 3.096 ± 0.619 724.2 44.17 0.723 ± 0.069 6.143 ± 0.586 ⁹⁵Zr 64.02 d 756.7 54.46 0.693 ± 0.087 5.888 ± 0.739 ⁹⁷Zr 16.91 h 743.3 93.06 0.857 ± 0.091 7.281 ± 0.773 ⁹⁹Mo 65.94 h 739.5 12.13 0.934 ± 0.129 7.935 ± 1.096 103 Ru 497.08 39.26 d 91.0 1.0 ± 0.01 8.496 ± 0.850 $^{105}Ru^{*}$ 4.44 h 724.3 47.3 0.889 ± 0.196 7.548 ± 1.662 ¹⁰⁵Rh 318.9 0.959 ± 0.013 35.36 h 19.2 8.148 ± 0.110 606.7 3.096 0.675 ± 0.056 5.735 ± 0.476 ^{112}Ag 3.13 h 617.4 43.0 5.327 ± 1.461 0.627 ± 0.172 ¹¹³Ag 5.37 h 298.6 10.0 0.579 ± 0.189 4.919 ± 0.606 ¹¹⁵gCd 53.46 h 336.24 45.9 0.471 ± 0.021 4.002 ± 0.178 117m Cd 1065.98 23.056 3.36 h 0.090 ± 0.017 0.765 ± 0.144 ¹¹⁷gCd 2.49 h 273.35 27.9 0.144 ± 0.015 1.223 ± 0.127

Nuclear spectroscopic data and yields of fission products in the 65 MeV bremsstrahlung induced fission of ²⁰⁹Bi.

Table 2. Nuclear spectroscopic data and cumulative yields of fission products in the2.5 GeV bremsstrahlung induced fission of 209Bi.

S.	. No. Nuclide	Half life	γ-ray energy (keV)	γ-ray abundance (%)	Yield of fission Relative	oroduct (%) Absolute
1.	47Sc	3.349 d	159.38	68.3	0.164 ±0.012	0.524 ±0.038
2.	48V	15.974 d	983.52	99.98	0.148 ±0.010	0.473 ± 0.032
3.	59Fe	44.503 d	1099.25	56.52	0.247 ± 0.047	0.790 ± 0.150
4.	69Znm	13.76 h	438.63	94.72	0.192 ± 0.034	0.614 ±0.109
5.	72Zn	46.5 h	191.96	9.37	0.410 ± 0.018	1.311 ±0.058
6.	75Se	119.779	d 264.66	58.3	0.628 ±0.019	2.008 ± 0.061
7.	77Br	57.036 h	578.85	2.96	0.536 ±0.011	1.714 ± 0.035
8.	83Rb	86.2 d	529.635	29.3	0.791 ±0.143	2.529 ± 0.457
9.	85Krm	24.48 h	304.87	14.0	0.514 ±0.021	1.643 ± 0.067
10.	87Y	79.8 h	388.53	82.0	0.744 ±0.011	2.379 ± 0.035
11.	87Ym	13.37 h	380.79	78.0	0.244 ± 0.073	0.780 ± 0.233
12.	88Kr	2.84 h	196.3	25.98	1.070 ±0.210	3.421 ±0.671
13.	88Zr	83.4 d	392.87	97.0	0.821 ±0.102	2.625 ± 0.326
14.	89Zr	89.41 h	908.96	100.0	1.077 ±0.328	3.443 ± 1.049
15.	91Sr	9.63 h	1024.3	33.4	1.081 ±0.184	3.456 ± 0.588
			749.8	23.61	1.018 ±0.158	3.255 ± 0.505
16.	92Sr	2.71 h	1383.93	90.3	0.767 ± 0.180	2.452 ± 0.575
17.	95Zr	64.02 d	756.7	64.46	1.261 ±0.213	4.031 ±0.681
			724.2	44.17	1.015 ± 0.058	3.245 ± 0.185
18.	95Tcm	161 d	582.08	29.96	0.219 ± 0.044	0.700 ± 0.141
19.	97Zr	16.91 h	743.36	92.8	1.044 ± 0.209	3.338 ± 0.668
20.	99Mo	2.458 d	140.14	89.43	1.022 ±0.176	3.267 ± 0.563
			739.34	12.17	0.934 ±0.219	2.986 ± 0.700

Table 2. continued

S	. No. Nuclide	Half life	γ-ray energy (keV)	γ-ray abundance (%)	Yield of fission p Relative	oroduct (%) Absolute
21. 22. 23	101mRh 103Ru 105Ru	4.34 d 39.254 d 4 44 h	306.86 497.08 724 21	81.0 90.9 47.0	0.265 ±0.034 1.0 ± 0.01 0 853 ±0 176	0.847 ±0.109 3.197 ±0.032 2 727 ±0.563
20.	roorta		676.56	15.7	0.787 ±0.044	2.516 ±0.141
24.	105Rh	35.36 h	319.14	19.2	0.933 ±0.105	2.983 ±0.336
25.	105Ag	41.29 d	344.52	41.0	0.270 ± 0.071	0.863 ±0.227
26.	111Ag	7.45 d	342.17	7.0	0.787 ±0.044	2.516 ±0.141
27.	111In	2.805 d	171.28	90.0	0.139 ±0.026	0.444 ±0.083
28.	112Ag	3.13 h	617.4	43.6	0.711 ±0.177	2.273 ±0.566
29.	115gCd	53.46 h	336.24	45.9	0.651 ±0.168	2.081 ±0.537
			527.9	27.45	0.664 ±0.093	2.122 ± 0.297
30.	117mCd	3.36 h	1065.98	23.056	0.248 ±0.050	0.793 ±0.160
31.	117gCd	2.49 h	273.35	27.7	0.398 ±0.102	1.272 ±0.326
32.	121mTe	154 d	212.9	81.0	0.342 ±0.068	1.093 ±0.217
33.	121Te	116.78 d	573.13	80.3	0.145 ±0.015	0.464 ± 0.048
34.	123gTe	40.06 m	n 160.33	86.0	0.509 ±0.102	1.627 ±0.326
35.	129Sb	4.32 h	812.8	43.0	0.364 ±0.114	1.164 ±0.364

Table 3. Nuclear data and cumulative yields of fission products in the 10 MeV bremsstrahlung induced fission of ²⁴⁰Pu.

S. No.	Nuclide	Half life	/-ray energy (keV)	γ-ray abundance (Yield of fissi %) Relative	on product (%) Absolute
1.	⁸⁵ Kr ^m	4.48 h	304.87	14.0	0.200 ±0.050	0.858 ±0.215
2.	⁸⁷ Kr	76.3 m	402.59	49.6	0.324 ±0.036	1.390 ±0.154
3.	⁸⁸ Kr	2.84 h	196.3	25.98	0.451 ±0.111	1.935 ±0.476
4.	⁹¹ Sr	9.63 h	749.8	23.61	0.660 ± 0.083	2.832 ± 0.356
			1024.3	33.4	0.654 ±0.093	2.806 ±0.399
5.	⁹² Sr	2.71 h	1383.93	90.3	0.656 ±0.089	2.815 ±0.382
6.	⁹⁵ Zr	64.02 d	756.7	64.46	0.851 ±0.026	3.652 ±0.112
7.	⁹⁷ Zr	16.91 h	743.36	92.8	1.035 ±0.134	4.441 ±0.575
8.	⁹⁹ Mo	2.458 d	140.51	89.43	1.719 ±0.229	7.375 ±0.982
			739.5	12.13	1.888 ±0.347	7.375 ±1.489
9.	¹⁰³ Ru	39.254 d	497.08	90.9	1.964 ±0.385	8.428 ±1.652
10.	¹⁰⁵ Ru	4.44 h	724.2	47.0	0.882 ±0.025	3.784 ±0.107
11.	¹⁰⁵ Rh	35.36 h	319.14	19.0	1.034 ±0.228	4.437 ±0.978
12.	¹¹² Ag	3.13 h	617.4	43.6	0.130 ±0.020	0.558 ±0.086
13.	¹¹⁵ Cd ^g	53.46 h	336.24	45.9	0.056 ±0.007	0.240 ±0.030
14.	¹¹⁷ Cd ^m	3.36 h	1065.98	23.1	0.030 ± 0.005	0.129 ±0.021
15.	¹¹⁷ Cd ^g	2.49 h	273.35	28.0	0.015 ±0.005	0.064 ±0.021

Table 3.continued

S. No.	Nuclide	Half life γ·	ray energy (keV)	γ-ray abundance (Yield of fiss (%) Relative	ion product (%) Absolute
16.	¹²⁷ Sb	3.85 d	685.7	37.0	0.276 ±0.029	1.184 ±0.124
17.	¹²⁸ Sn	59.07 m	482.3	59.0	0.340 ±0.026	1.459 ±0.112
18.	¹²⁹ Sb	4.32 h	812.8	43.0	0.412 ±0.072	1.768 ±0.309
19.	131	8.04 d	364.49	81.7	0.770 ±0.154	3.304 ±0.661
20.	¹³² Te	76.896 h	228.16	88.0	0.897 ±0.030	3.849 ±0.129
21.	133	20.8 h	529.87	87.0	1.269 ±0.108	5.445 ±0.463
22.	¹³⁴ Te	41.8 m	566.0	18.6	1.890 ±0.187	8.108 ±0.802
			767.2	29.5	1.706 ±0.184	7.319 ±0.789
23.	134	52.5 m	847.3	95.4	2.441 ±0.360	10.472±1.544
			884.09	64.9	2.369 ±0.574	10.163±2.462
24.	135	6.57 h	1260.41	28.9	1.336 ±0.049	5.733 ±0.210
25.	¹³⁸ Cs	33.41m	1435.8	76.3	1.769 ±0.052	7.591 ±0.223
26.	¹³⁹ Ba	1.384 h	165.86	23.7	1.386 ±0.199	5.947 ±0.854
27.	¹⁴² La	1.518 h	641.29	47.0	0.851 ±0.026	3.652 ±0.112
28.	¹⁴³ Ce	33.039 h	293.27	42.8	0.764 ±0.175	3.278 ±0.751

ERROR ANALYSIS

NATURE SOURCE OF ERROR % OF ERROR

(a) Random	(I) Counting statistics	3-4
	(ii) Irradiation time	1-1.5
	(iii) Rate of fission (R= $n\sigma\phi$)	5-7
	(iv) Least sqare analysis)	5-7
	Total (σ_R)	7.8-10.8

Upper limit (σ_t) of error in single measurement is given as

 $\sigma_{\rm T}$ = Square root of ($\sigma_{\rm R}^2 + \sigma_{\rm S}^2$) =10.5-15 %

Probable error (σ_P) in single measurement = 0.6745 σ_T = 7.4 - 9%

Precissional error in (σ_0) in replicate (n) measurement = 8 – 13%

Standard error(σ_M) of mean value = σ_0 / square root of n = 5-8 %

Quoted error on yields value within 68 % confidence limit =

= Square root of $(\sigma_T^2 + \sigma_M^2) = 8.6 - 12.4 \%$

* In all the cases σ^2 are the variance.

RESULTS on Cumulative yields with errors bar are given before.

Fig.2. Yields of fission products (%) vs. their mass number

Yields of fission products vs. their mass number in ²³⁹Pu(n,f) & ²⁴⁰Pu(γ ,f)

Yields of fission products (%) vs. their mass number in 232 Th(γ ,f)

DISCUSSION AND CONCLUSION

Yields of 28-35 fission products have been determined in the 10 MeV bremsstrahlung induced fission off ²³²Th, ²³⁸U and ²⁴⁰Pu. The mass distributions are asymmetric in nature as in the case of neutron induced fission.

In the case of ²³²Th, there is third peak around symmetric region as in the case of neutron induced fission of ^{229,232}Th. This is due to the second dip in the outer symmetric barrier, which is called Thorium anomaly.

#The average heavy mass number is 139 ± 1 due to preference of deformed 88n shell, which is favorable from N/Z point of view compared to spherical 82n shell.

#The yields of fission products around mass number 133-135,138-140 and 143-146 and their complementary are higher than expected. This is due to the presence of spherical 82n shell and deformed 88n shell at mass number 133-135 and 143-145 respectively, which indicates the effect of shell closure proximity.

#-Higher yields of fission products in the interval of five mass units due even-odd effect, which also indicates the role of nuclear structure effect.

#The peak to valley ratio (P/V) decreases with decrease of bremsstrahlung energy, which indicates the role of excitation energy.

DISCUSSION AND SUMMARY

- #Yields of 11-35 fission products have been determined. #Yield of 109Pd in 85 MeV and 112Pd at 28-50 MeV are higher than expected, which is due to the presence of deformed 66n shell (nuclear structure effect).
- #-Mass distribution of 28-85 MeV, 0.6-2.5 GeV bremsstrahlung induced fission of ²⁰⁹Bi is symmetric in nature, which indicates the liquid drop fission barrier.
- #1. FWHM increases with increase of energy of bremsstrahlungi.e. 19-23 mass units at 28-85 MeV. 35-40 mass units at0.6-1.0 GeV and 51 mass units in 2.5 GeV.
- #2. Average mass decreases from mass number 103-102 at
- 28-85 MeV to 100-98 at 0.6-1.0 GeV & 95 mass at 2.5 GeV. # The above two observations is due to increase of multi-nucleon emission and multi-chance fission probabilities with increase of excitation energy.
- [#]The nuclear structure effect observed at low energy vanishes at high energy, which also indicates the role of excitation energy.

ACKNOWLEDGEMENT

I would like to express my sincere thanks to Prof. Gyuinyun Kim, in the Kyungpook National University for his invitation as visiting scientist and support me during my staying in Korea.

I am also very much thankful to Dr. S. Ganesan of RPDD for selecting me to chose my name and suggested to Prof. G. Kim for the experiment.

I am thankful to Dr. K. L. Ramakumar, Group Director, Dr. S. K. Agrawal, associated group director and Dr. A. Goswami, Head, RCD for allowing me to go and do experiment at LINAC facility, Pohang, Republic of Korea.

I am thankful to Dr. Youngdo Oh, Dr. H. S. Lee and colleagues in the Pohang Accelerator Laboratory, for their kind and useful help and excellent collaborations during experiment.

I am grateful to Dr. Nimje and Dr. Mittal of EBC, Kharghar as well as Dr. Ganesh of Microtron centre to providing me the 8-10 MeV electron beam in India.

Finally I am thankful to Prof. Xia Hahong of CNDC, Beijing, China and Prof. K. Kato of Dept of Physics, Hokkaido University Sapporo, Japan for inviting me and giving all my support to give a talk in "The 2nd Asian Nuclear Reaction Database Development Workshop".

THANK YOU ALL